Аналогично можно вывести формулу для нахождения работы силы.
II. Метод дифференциалов.
Электрический заряд.
Представим себе переменный ток, текущий по проводнику. Как вычислить заряд q, переносимый за интервал времени [a; b] через сечение проводника? Если бы сила тока I не менялась со временем, то изменение заряда q равнялось бы произведению I(b-a). Пусть задан закон изменения I=I(t) в зависимости от времени. Тогда на малом интервале времени [t; t+dt] можно считать силу тока постоянной и равной I(t). Тогда дифференциал заряда запишем так: dq=I(t)dt. Отсюда получаем, что весь заряд, переносимый за интервал времени [a; b] можно записать в виде интеграла:
.Аналогично выводятся и формулы для нахождения работы силы, перемещения точки, вычисления массы стержня, электрического заряда и давления воды на плотину. [2]
III. Рассмотрение практической задачи.
Работа силы.
Вычислить работу силы F при сжатии пружины на 0,08 м, если для её сжатия на 0,01 м требуется сила 10 Н. [1]
По закону Гука сила F пропорциональна растяжению или сжатию пружины, т. е. F=kx, где x – величина растяжения или сжатия (в м), k – постоянная. Из условия задачи находим k. Так как при х=0,01 м и сила F=10 Н, то
. Следовательно, F(x)=kx=1000x.Работа силы F(x) при перемещении тела из точки а в точку b равна
.Используя данные задачи, получаем:
(Дж).Рассмотрим достоинства и недостатки каждого из выше перечисленных методов.
Если учащиеся знакомились с понятием интеграла как предела интегральных сумм, то первый метод изучения приложений будет наиболее логичным и понятным. Если же понятие интеграла вводилось с помощью приращения первообразной, то использование данного метода получения формул стоит обосновать для учащихся и рассмотреть довольно подробно с введением понятия интегральных сумм, что довольно громоздко, но необходимо.
Достоинством второго метода при введении понятия интеграла с помощью приращения первообразной состоит в том, что он не такой громоздкий, как первый и с его помощью можно вывести много формул даже в рамках урока. Однако, в таком случае вычисление интеграла с помощью интегральных сумм остается за рамками изучения, что является не совсем корректным. При введении понятия интеграла с помощью интегральных сумм рассмотрение данного метода при изучении приложений необходимо пояснить.
Третий метод применим только в классах курса А. Здесь нет необходимости выводить формулы, достаточно дать общее представление.
Подводя итоги первой главы можно сделать следующие выводы.
Как выяснилось, существуют различные методы введения понятия интеграла и изучения его приложений и выбор одного из них – задача учителя. Но для полноценного изучения интеграла, для возможности предоставить учащимся более полноценную, наиболее обоснованную и понятную картину рассматриваемого явления учителю необходимо использовать различные методы в совокупности, различную литературу, т.к. в рамках школьного учебника и методов, которые каждый из них предлагает учителю, это невозможно. В каждом из выше рассмотренных учебников есть свои недостатки при введении понятия и изучении его приложений, которые описаны выше. В некоторых из них не рассматриваются ни свойства, ни техника интегрирования.
Проанализировав школьные учебники относительно использования физических моделей при изучении понятия интеграла, можно сделать вывод, что при изучении свойств и техники интегрирования ни один автор не использует физических задач, а при введении понятия интеграла авторы ограничиваются использованием следующих физических моделей: вычисление работы переменной силы, перемещения точки, массы стержня переменной плотности. На самом деле существует огромный запас задач из других разделов физики, которые можно использовать при введении понятия интеграла, а при изучении его свойств обосновывать их с помощью физических задач, при рассмотрении техники интегрирования демонстрировать методы на примерах всё тех же физических задач. Таким образом, все понятия, свойства, методы не только будут предоставлены учащимся как факты, но будут и обоснованы, и продемонстрированы, и покажут межпредметную связь физики и математики.
Глава 2
Физические модели при изучении темы «Интеграл»
2.1. Введение понятия интеграла с помощью физических моделей
После анализа достоинств и недостатков школьных учебников математики относительно темы «Интеграл», после ознакомления с некоторыми учебниками физики и, учитывая психолого-педагогические и методические основы изучения интеграла, мною была разработана методика изучения понятия интеграла с использованием физических моделей в школьном курсе математики, представленная в данной главе.
Нижеследующая методика введения понятия интеграла с помощью задач физики разрабатывалась мной на основе следующего факта.
Физические величины, вычисляемые с помощью интеграла, можно разделить на два типа, в зависимости от того, как они естественно определяются. К первому типу относятся «первичные» величины (длина пути, масса, количество электричества, количество теплоты и т. п.), т. е. такие величины, для которых другие, связанные с ними («вторичные») величины (соответственно скорость, линейная плотность, величина тока, удельная теплоемкость и т. п.) определяются как производные этих величин. Ко второму типу относятся такие, которые определяются естественным образом как интегралы от «первичных» по отношению к ним величин (например, площадь, работа). Для первого типа величин интегральная формула для их вычисления может и должна быть доказана, опираясь на известное из предыдущего материала определение «вторичной» величины как производной от данной «первичной». Для второго типа интегральная формула появляется по определению.[5]
В соответствии с этим рассмотрим описанные в первой главе подходы на конкретных физических моделях из разных разделов физики (механика, электродинамика, кинематика и др.), уделив особое внимание второму подходу, поскольку в школьных учебниках он практически не используется.
При введении понятия интеграла как предела интегральных сумм довольно наглядным и понятным для учащихся является пример задачи о давлении жидкости на стенку.
Задача. Бассейн высоты H наполнен водой. Вычислить давление воды на прямоугольную стенку бассейна с основанием прямоугольника, равным а.
Разделим высоту Н на n равных частей (Δh). Стенка разделится на «элементы». Так как кубометр воды весит тонну, то давление столба жидкости высоты hi м, имеющего сечение 1 м2, равно hi тоннам.
Давление же воды на элемент, находящийся на глубине hi, равно произведению hi на площадь элемента: hiaΔh. Обозначим произведение hiaчерез F(hi). Тогда величина давления на всю стенку приближенно равна
Pn≈ F1(h1)Δh1+…+Fn(hn) Δhn.
Данную сумму называют интегральной суммой функции F(h) на отрезке [0; H]. При этом предполагается, что функция F(h) непрерывна на отрезке [0; H] и может принимать любые значения. Если
и высоты «элементов» стремятся к нулю, то точное выражение суммы равно . Его называют определенным интегралом от функции F(h) на отрезке [0; H] и обозначают .Далее понятие определенного интеграла обобщается на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b].
Рассмотрим несколько задач с физическими моделями, где интеграл определяется как приращение первообразной.
1. Задача о перемещении точки.
Пусть v=v(t) скорость прямолинейного движения точки, заданная на некотором промежутке времени [t1; t2]. При этом пусть v(t)>0. Как выразится длина пути, пройденного точкой за данный промежуток времени?[5]
Обозначим координату движущейся точки в момент t через S(t). Тогда, так как движение при v>0 происходит только в положительном направлении (или иначе, т. к. S(t) – функция возрастающая, ввиду того, что
), то искомое расстояние будет выражаться числом S(t2)-S(t1). С другой стороны S(t) есть первообразная функции v(t) ( ). Таким образом вычисление длины пути, пройденного точкой за данный промежуток времени, сводится к отысканию первообразной S(t) функции v(t), т. е. к интегрированию функции v(t).