Смекни!
smekni.com

Усні обчислення на уроках математики в початкових класах (стр. 4 из 12)

Отже, потрібно починати вивчати табличне множення із зрозумілих дітям ілюстрацій, щоб перевірка табличного множення при необхідності могла бути виконана за допомогою дії складання. Зручно для таких цілей використовувати природні групи. Наприклад, картинки вишень по 2, по 3 штуки. Зрозумілим стає зміст множення, коли виконуються ілюстрації із залученням кольорових паличок різних розмірів [30, 66].

Наприклад, складається склад потягу з 5 червоних (однакових за розмірами) паличок, потім маленькі вагончики замінюються одним великим вагоном, паличкою фіолетового кольору. Якщо довжина червоної палички дорівнює одному сантиметру, тоді можна скористатися таким записом:

1+ 1 + 1 + 1 + 1 = 5.

Перевірити правильність обчислень можна за допомогою вимірювання довжини фіолетової палички. За допомогою множення можна виконати такий запис: 1 х 5 = 5.

Якщо в якості вагончиків брати палички інших розмірів, то можна показати рівноцінність записів:

3 + 3 + 3 + 3 = 12 і 3 х 4 = 12.

При ілюстрації дій ділення слід пам'ятати про два види завдань, які розв'язуються дією ділення (завдання на ділення за змістом і ділення на частини). По суті справи, однією і тією ж дією ділення описуються різні практичні ситуації. "12 кроликів розмістили порівну в трьох клітках. По скільки кроликів стало в одній клітці?" Для розуміння учнями значення слова "порівну", як важливої умови застосування дії ділення, можна запропонувати це ж завдання, опустивши слово порівну. Потрібно розібрати різні варіанти рішення нової задачі [41, 38].

Якщо учнів ставити тільки в умови стандартних завдань, то говорити про самоконтроль по ходу рішень не доводиться навіть в умовах, коли учням нагадуватиметься про виконання контрольних дій. Учитель може судити про результативність самоконтролю учнів у виконанні ділення за якістю рішення прикладів. Усвідомлення контрольних дій учнями досягається в ході роботи вчителя, як по формуванню сенсу окремої арифметичної дії, так і по формуванню змісту обчислювальних прийомів.

Кажучи про постановку навчальних завдань, а також про доступні шляхи їх вирішення в умовах навчання самоконтролю молодших школярів, підкреслимо ситуацію при вивченні табличного множення, як основу усного і письмового множення. Можна складати з учнями таблиці множення із залученням вже знайомих ситуацій, коли предмети об'єднані в природні групи [62, 34].

Наприклад, учням пропонується плакат з намальованими на ньому вишеньками. Учитель викликає учнів до дошки і розподіляє обов'язки так: один учень показує групи вишень (спочатку одну вишню, потім кожного разу на одну вишню більше), другий учень записує приклади на складання, а третій учень записує приклади на множення. Після такої роботи учні роблять висновок, що на 1 можна помножити за правилом: "Якщо число умножають на 1, то відповідь записується це саме число". Якщо на плакаті зобразити вишні в пензликах по дві штуки, то можна скласти таблицю множення числа 2.

Табличне ділення розглядається вже не на конкретних ситуаціях, а із залученням таблиці множення. Якщо учень по таблиці множення може вільно називати результати табличного ділення, то самоконтроль у виконанні табличного ділення забезпечений. Поки учні недостатньо міцно оволоділи табличним діленням вони можуть здійснювати самоконтроль, використо-вуючи запис таблиці множення. Проте подивитися в значення табличних результатів можна після того, як завдання виконане [29, 54].

Учень може перевірити відповідь прикладу, знайшовши результат множення дією віднімання. Застосування дії віднімання для перевірки множення визначається тим, що множення на 10 запам'ятовується за правилом, а від кінцевого результату можна виходити для відшукання випадків табличного множення. (3 х 10 = 30, а 3 х 8 = 30 - 3 - 3 = 24).

Для самоконтролю дій множення, ділення можна рекомендувати використовувати стрічку чисел від 1 до 100, яка виготовляється з цільного паперу за зразком сантиметрової кравецької стрічки. Наприклад, відшукуючи за допомогою стрічки результат множення 5 х 4, учні можуть міркувати так: "Потрібно 5 умножити, тому знаходжу на стрічці клітку з цифрою 5. По 5 потрібно узяти 4 рази, тому смужок в 5 кліток відмірюю 4. На кінці четвертої смужки читаю відповідь 20." Розглянемо знаходження результату ділення 49 : 7 на числовій стрічці. "Потрібно 49 ділити, тому знаходжу на стрічці число 49. Тепер складатиму смужки по 7 кліток. Вважаю, скільки таких смужок вийшло до 49, їх отримано 7. Це означає, що відповідь прикладу дорівнює 7."

Для виробки навички табличного множення потрібна копітка робота по організації самих різних видів усного рахунку, з якого починається кожен урок математики. Покажемо зразкові види усного рахунку на табличне множення і ділення. Як показує практика школи, найбільш ефективними прийомами усного рахунку є: гра з плесканнями в долоні, гра в крапки, розповідь таблиці по порядку, робота з перфокартами [33, 86].

Для закріплення табличного множення і ділення використовують електрифіковану таблицю, гру "Лото". Картки для гри містять умови прикладів і їх відповіді. В ході усного рахунку виробляються навики самоконтролю. При міцному запам'ятовуванні таблиць множення і ділення у учнів не викликає ускладнень рішення прикладів, самоконтроль автоматизований. Якщо є сумніви, зупинки, то слід говорити про недостатню обчислювальну навичку і недостатню навичку самоконтролю.

Отже, усні обчислення важливі для поведінки дітей у життєвих ситуаціях. З метою розвитку комунікативних навичок важливо прищепити їм уміння усно обчислювати. Правильність усних обчислень досягається при сформованому самоконтролі.

1.2 Види вправ для усних обчислень

Вправи з усних обчислень мають пронизувати увесь урок. Їх можна поєднувати з перевіркою домашніх завдань, закріпленням вивченого матеріалу, опитуванням учнів. Поряд з цим у практиці роботи вчителів є хороша традиція: на кожному уроці спеціально відводити 5-7 хв для усних обчислень, проводити так звану усну лічбу. Матеріал для цього етапу уроку вчитель запозичує з підручника, а також із спеціальних збірників усних задач і вправ.

Щоб навички усних обчислень постійно вдосконалювались, треба встановити правильне співвідношення в застосуванні усних і письмових прийомів обчислень, а саме обчислювати письмово тільки тоді, коли усно обчислити важко [29, 56].

Прийоми як усних, так і письмових обчислень ґрунтуються на знанні нумерації, конкретного змісту і властивостей арифметичних дій, зв’язку між результатами та компонентами дій, а також на знанні зміни результатів дій залежно від зміни одного з компонентів. Проте між прийомами усних і письмових обчислень є істотні відмінності [9]:

1)Усні обчислення виконують, починаючи з одиниць вищого розряду, а письмові – з нижчого (винятком є ділення). Наприклад:

450 + 120 = (400 + 50) + + 357

+ (100 + 20) = (400 + 100) + 246

+ (50 + 20) = 500 + 70 = 570 603

Обчислення виконано усно; Обчислення виконано письмово;

його виконують, починаючи його виконують, починаючи з з одиниць вищого розряду. одиниць нижчого розряду.

2) Проміжні результати під час усних обчислень зберігають у пам’яті, під час письмових – відразу записують.

3) Прийоми усних обчислень для тієї самої дії над парою чисел можуть бути різні залежно від особливостей прикладу і тієї властивості, яку використовують, а письмові обчислення виконують за точніше окресленим правилом, прийнятим для кожної арифметичної дій.

Наприклад:

48·15=48·(10+5)= 483

=48·10+48·5=480+ х

+240=720 15

48·15=48·(5·3)=48·5·3=

=240·3=720 2415

48·15=(40+8)·15=40·15+ 483

+8·15=600+120=720

Використовуються різні прийоми 7245усних обчислень Використовується завждитой самий прийом письмового множення

4) Розв’язування під час усних обчислень записують у рядок (якщо це потрібно), а в письмових обчисленнях – стовпчиком .

5) Усні обчислення звичайно виконують над числами в межах 100 і над багатоцифровими числами, якщо обчислення над ними зводяться до випадків у межах 100, а письмово виконують дії над багато-цифровими числами тоді, коли усно обчислити важко.


Обчислювальні терміни вивчають у тісному зв’язку з розглядом певних питань теорії. Питання про місце введення обчислювальних прийомів та методику їх вивчення розглянуто у відповідних концентрах.

Виховуючи любов до усних вправ, вчитель допомагає учням активно працювати з навчальним матеріалом, пробуджує у них прагнення удосконалювати способи обчислень і розв’язування задач, менш раціональні замінювати досконалішими та економнішими. А це – важлива умова свідомого засвоєння матеріалу. Спрямованість мислительної діяльності на пошук раціональних шляхів розв’язання проблеми свідчить про варіативність мислення [19, 57].

Розв’язуючи певну задачу, обчислюючи вираз, учень повинен уважно розглянути умову завдання, зуміти помітити всі його особливості і в кожному конкретному випадку обрати ті шляхи, які простіше й швидше приводять до мети. Таким чином, при виконанні усних обчислень можна говорити про критичність мислення, тобто уміння оцінити запропоновані варіанти розв’язання і обрати більш раціональний підхід до виконання даного завдання.

Усні вправи також сприяють розвитку мовлення учнів, якщо з самого початку навчання вводити в тексти завдань і використовувати при обговоренні вправ математичні терміни. Навички правильного, точного і лаконічного мовлення, що формуються на уроках математики, позитивно впливають на загальну мовленнєву культуру. Важливо, щоб вчитель сам слідкував за своїм мовленням і формулював завдання ясно, чітко, лаконічно і послідовно.