x1 + x2 = 1, y1 + y2 = 1.
Найдем решение игры графическим методом. На оси ОX отложим отрезок, длина которого равна единице. Левый конец (x= 0) соответствует стратегии первого игрока А1, правый (x = 1) - стратегии А2. Внутренние точки отрезка будут соответствовать смешанным стратегиям (x1, x2) первого игрока, где x1 =1 - x2. Через концы отрезка проведем прямые, перпендикулярные оси ОX, на которых будем откладывать выигрыш при соответствующих чистых стратегиях. Если игрок В применяет стратегию В1, то выигрыш при использовании первым игроком стратегий А1 и А2 составит соответственно а11 и а21. Отложим эти точки на прямых и соединим их отрезком В1В1. Если игрок А применяет смешанную стратегию, то выигрышу соответствует некоторая точка М, лежащая на этом отрезке. (см. рис.1)
В1 а21
М
В1
а11
х2 х11 Х
Рис.1. Подписать рисунок
Аналогично строится отрезок В2В2, соответствующий стратегии В2 игрока В.
Определение 1. Ломаная линия, составленная из частей отрезков, интерпретирующих стратегии игрока В, расположенная ниже всех отрезков, называется нижней границей выигрыша, получаемого игроком А.
Определение 2. Стратегии, части которых образуют нижнюю границу выигрыша, называются активными стратегиями.
В игре (2 ´ 2) обе стратегии являются активными.
В2
а12 К
В2 а22
В1
а11 v
О х2 N х1 1 Х
Рис.2.
Ломаная В1КВ2 является нижней границей выигрыша, получаемого игроком А. (см. рис.2) Точка К, в которой он максимален, определяет цену игры и ее решение. Найдем оптимальную стратегию первого игрока. Запишем систему уравнений
Приравнивая выражения для v из уравнений системы и учитывая, что
x1 + x2 = 1, получим , , (1)
. (2)
Составляя аналогичную систему
и учитывая условие
y1 + y2 = 1,
можно найти оптимальную стратегию игрока В:
. (3)
Пример 1. Найти решение игры, заданной матрицей
.
Рис.3.
По формулам (1) - (3) находим оптимальные стратегии и цену игры:
x1 = 1/3, x2 = 2/3; y1 = 2/3, y2 = 1/3; v=5/3.
Ответ. Оптимальные смешанные стратегии игроков (1/3, 2/3) и (2/3, 1/3), цена игры составляет v=5/3.
Данный ответ означает следующее:
если первый игрок с вероятностью 1/3 будет применять первую стратегию и с вероятностью 2/3 вторую, то при достаточно большом количестве игр с данной матрицей его выигрыш в среднем составит не менее 5/3;
если второй игрок с вероятностью 2/3 будет применять первую стратегию и с вероятностью 1/3 вторую, то при достаточно большом количестве игр с данной матрицей его проигрыш в среднем составит не более 5/3.
Второй случай. Рассмотрим игру (2 ´n) с матрицей
.
Для каждой из n стратегий игрока В строится соответствующий ей отрезок на плоскости. Находится нижняя граница выигрыша, получаемого игроком А, и определяется точка на нижней границе, соответствующая наибольшему выигрышу. Выделяются две активные стратегии игрока В, отрезки которых проходят через данную точку. Далее рассматриваются только эти две стратегии игрока В. Игра сводится к игре с матрицей (2 ´ 2). Оптимальные стратегии и цену игры находят по формулам (1) - (3).
Пример 2. Найти решение игры, заданной матрицей
.
a = max (1,1) = 1, b = min (4, 3, 3,4) = 3, a¹b, .
Игра не имеет седловой точки. Оптимальное решение следует искать в области смешанных стратегий. Построим на плоскости отрезки, соответствующие стратегиям второго игрока. (см. рис.4)
Нижней границей выигрыша для игрока А является ломаная В3КВ4. Стратегии В3 и В4 являются активными стратегиями игрока В. Точка их пересечения К определяет оптимальные стратегии игроков и цену игры. Второму игроку невыгодно применять стратегии В1 и В2, поэтому вероятность их применения равна нулю, т.е. у1 = у2= 0. Решение игры сводится к решению игры с матрицей (2 ´ 2)
.
a = max (1,1) = 1, b = min (3,4) = 3, a¹b, .
По формулам (1) - (3) находим оптимальные стратегии и цену игры:
x1 = 2/5, x2 = 3/5; y3 = 3/5, y2 = 2/5; v=11/5.
Ответ. Оптимальные смешанные стратегии игроков (2/5, 3/5) и (0, 0, 3/5, 2/5), цена игры составляет v=11/5.
Данный ответ означает следующее:
если первый игрок с вероятностью 2/5 будет применять первую стратегию и с вероятностью 3/5 вторую, то при достаточно большом количестве игр с данной матрицей его выигрыш в среднем составит не менее 11/5;
если второй игрок с вероятностью 3/5 будет применять третью стратегию, с вероятностью 2/5 четвертую и не будет использовать первую и вторую стратегии, то при достаточно большом количестве игр с данной матрицей его проигрыш в среднем составит не более 11/5.
Третий случай. Рассмотрим игру (m´ 2) с матрицей
.
Решение игры может быть получено аналогично случаю два. Для каждой из m стратегий игрока А строится соответствующий ей отрезок на плоскости.
Находится верхняя граница проигрыша, получаемого игроком В, и определяется точка на нижней границе, соответствующая наименьшему проигрышу. Выделяются две активные стратегии игрока А, отрезки которых проходят через данную точку.
Далее рассматриваются только эти две стратегии игрока А. Игра сводится к игре с матрицей (2 ´ 2). Оптимальные стратегии и цену игры находят по формулам (1) - (3).
Пример 3. Найти решение игры, заданной матрицей
.
a = max (3, 2, 0, - 1) = 3, b = min (4,6) = 4, a¹b, . Игра не имеет седловой точки. Оптимальное решение следует искать в области смешанных стратегий. Построим на плоскости отрезки, соответствующие стратегиям первого игрока. (см. рис.5).
Верхней границей проигрыша для игрока В является ломаная А1КА4. Стратегии А1 и А4 являются активными стратегиями игрока А. Точка их пересечения К определяет оптимальные стратегии игроков и цену игры. Первому игроку невыгодно применять стратегии А2 и А3, поэтому вероятность их применения равна нулю, т.е. x2 = x3= 0. Решение игры сводится к решению игры с матрицей (2 ´ 2)
.
a = max (3, - 1) = 3, b = min (4,6) = 4, a¹b, .
По формулам (1) - (3) находим оптимальные стратегии и цену игры:
x1 = 7/8, x4 = 1/8; y1 = 3/8, y2 = 5/8; v=27/8.
Ответ. Оптимальные смешанные стратегии игроков (7/8, 0, 0, 1/8) и (3/8, 5/8), цена игры составляет v=27/8.