Смекни!
smekni.com

Почему Луна не падает на Землю ? (стр. 2 из 2)

Есть ли центробежная сила в сис­теме Земля — Луна, на что она дейст­вует?

В системе Земля — Луна силы взаимного притяже­ния Земли и Луны равны и противоположно направлены, а именно к центру масс. Обе эти силы центрост­ремительные. Центробежной силы здесь нет.

Расстояние от Земли до Луны равно примерно 384 000 км. От­ношение массы Луны к массе Земли равно 1/81. Следовательно, расстояния от центра масс до центров Луны и Земли будут обратно пропорциональны этим числам. Разделив 384 000 км на 81, получим примерно 4 700 км. Значит, центр масс находится на расстоянии 4 700 км от центра Земли.

Радиус Земли равен Около 6400 км. Следовательно, центр масс системы Земля — Луна лежит внутри земного шара. Поэтому, если не гнаться за точностью, можно говорить об обращении Луны вокруг Земли.

Легче улететь с Земли на Луну или с Луны на Землю, т.к. известно, для того чтобы ракета стала искусствен­ным спутником Земли, ей надо сообщить начальную скорость ≈ 8 км/сек. Чтобы ракета вышла из сферы притяжения Земли, нужна так называемая вторая космическая скорость, равная 11,2 км/сек. Для запуска ракет с Луны нужна меньшая скорость т.к. сила тяже­сти на Луне в шесть раз меньше, чем на Земле.

Тела внутри ракеты становятся невесомыми с того момента, ко­гда прекра­щают работу двигатели и ракета будет свободно лететь по орбите во­круг Земли, находясь при этом в поле тяготения Земли. При свободном по­лете вокруг Земли и спутник, и все предметы в нем относительно центра массы Земли движутся с одинаковым центростремительным ускорением и по­тому не­весомы.

Как двигались не связанные ниткой шарики на центробежной машине: по ра­диусу или по касательной к окруж­ности? Ответ зависит от выбора системы от­счета, т. е. относитель­но какого тела отсчета мы будем рассматривать движение шари­ков. Если за систему отсчета принять поверхность стола, то шарики двигались по касательным к описываемым ими окруж­ностям. Если же принять за систему отсчета сам вращающийся прибор, то шарики двигались по радиусу. Без указания системы отсчета вопрос о движении вообще не имеет смысла. Дви­гаться — значит перемещаться относительно других тел, и мы должны обя­за­тельно указать, относительно каких именно.

Вокруг чего обращается Луна?

Если рассмат­ривать движение относительно Земли, то Луна обращается во­круг Земли. Если же за тело от­счета принять Солнце, то - вокруг Солнца.

Могут Земля и Луна столкнуться? Их ор­биты вокруг Солнца пересека­ются, и даже не один раз.

Конечно, нет. Столк­новение возможно только в том слу­чае, если бы орбита Луны относитель­но Земли пересекала Землю. При по­ложении же Земли или Луны в пункте пересечения пока­занных орбит (отно­сительно Солнца) расстоя­ние между Землей и Луной в среднем равно 380 000 км. Чтобы лучше в этом ра­зобраться, давайте начертим сле­дующею. Орбиту Земли изо­бра­зил в виде дуги ок

ружности ра­диусом 15см(расстояние от Зем­ли до Солнца, как известно, равно 150 000 000 км). На дуге, равной части окружности (месячный путь Земли), отметил на рав­ных расстояниях пять то­чек, считая и крайние. Эти точки будут центрами лун­ных орбит относительно Земли в последовательные четверти месяца. Радиус лунных орбит нель­зя изобразить в том же масштабе, в каком вычерчена ор­бита Земли, так как он будет слиш­ком мал. Чтобы начертить лунные орбиты, надо выбранный масштаб увеличить примерно в десять раз, тогда радиус лун­ной орбиты составит около 4 мм. После этого ука­зал на каждой орбите положение Луны, начав с полнолуния, и со­единил от­меченные точки плавной пунктирной линией.

Главной задачей было разделить тела отсчета. В опыте с центробеж­ной маши­ной оба тела отсчета одновременно проеци­руются на плоскость стола, по­этому очень трудно сосредоточить внимание на одном из них. Мы решили свою задачу так. Линейка из плотной бумаги (ее можно заменить полоской жести, плекси­гласа и т. п.) будет служить стержнем, по которому скользит кар­тонный кружок, напоминающий шарик. Кружок двой­ной, склеенный по ок­ружности, но с двух диаметрально противо­положных сторон оставлены про­рези, через кото­рые продета линейка. Вдоль оси линейки сделаны отверстия. Телами отсчета служат линейка и лист чистой бумаги, который мы кнопками прикрепили к листу фанеры, чтобы не портить стола. Насадив линейку на бу­лавку, как на ось, воткнули булавку в фанеру (рис.6). При повороте линейки на равные углы последовательно расположенные отверстия оказывались на од­ной прямой линии. Но при повороте линейки вдоль нее скользил картонный кружок, после­довательные положения которого и требовалось отмечать на бу­маге. Для этой цели в центре кружка тоже сделали отверстие.

При каждом повороте линейки остри­ем карандаша отмечали на бумаге по­ложение центра кружка. Когда линей­ка прошла через все заранее намечен­ные для нее положе­ния, линейку сня­ли. Соединив метки на бумаге, убе­дились, что центр кружка переме­щал­ся относительно второго тела отсчета по прямой линии, а точнее по каса­тельной к начальной окружности.

Но во время работы над прибором я сделал несколько интересных открытий. Во-первых, при равномер­ном вращении стержня (линейки) ша­рик (кружок) пере­мещается по нему не равномерно, а ускоренно. По инер­ции тело должно дви­гаться равно­мерно и прямолинейно — это закон природы. Но двигался ли наш шарик только по инерции, т. е. свободно? Нет! Его подталкивал стержень и со­общал ему ускорение. Это всем будет понятно, если обратиться к чертежу (рис. 7). На горизонтальной ли­нии (касательной) точками 0, 1, 2, 3, 4 отмечены положения шарика, ес­ли бы он двигался совсем свобод­но. Соответствующие по­ложения ради­усов с теми же цифровыми обозначе­ниями показывают, что шарик движется ускоренно. Ускорение шарику сообщает упругая сила стержня. Кроме того, трение между шариком и стержнем оказывает сопротивление движению. Если допустить, что сила трения равна силе, которая сообщает шарику ускорение, движение шарика по стержню должно быль равномерным. Как видно из рисунка 8, движе­ние шарика относительно бумаги на столе криволинейное. На уроках чер­че­ния нам говорили, что такая кри­вая называется «спиралью Архимеда». По та­кой кривой вычерчивают профиль кулачков в некоторых механизмах, когда хотят равномерное вращательное движение превратить в равномерное поступа­тельное движение. Если приставить друг к другу две такие кривые, то кулачок по­лучит сердцевидную форму. При равномерном вращении детали такой формы упи­рающийся в нее стержень будет совершать поступательно-возвратное движение. Я сделал модель такого кулачка (рис. 9) и модель механизма для равномерной на­мотки ниток на катушку (рис. 10).

Я никаких открытий при вы­полнении задания не сделал. Но я многому научился, пока составлял эту диа­грамму (рис. 11). Надо было правильно определить положение Луны в ее фазах, поду­мать о направлении движения Луны и Земли по их орбитам. В чертеже есть неточ­ности. О них я сейчас скажу. При выбранном масштабе неправильно изображена кри­визна лунной орбиты. Она должна быть все время вогнута по отношению к Солнцу, т. е. центр кривизны должен находиться внутри орбиты. Кроме того, в году не 12 лунных месяцев, а больше. Но одну двенадцатую часть окружности легко постро­ить, поэтому я условно принял, что в году 12 лунных месяцев. И, наконец, вокруг Солнца обращается не сама Земля, а общий центр масс системы Земля - Луна.


Заключение

Одним из ярких примеров достижений науки, одним из свидетельств неограниченной познаваемости природы было открытие планеты Нептун путем вычислений —«на кончике пера».

Уран — планета, следующая за Сатурном, который много ве­ков считался самой далекой из планет, была открыта В. Гершелем в конце XVIII в. Уран с трудом виден невооруженным гла­зом. К 40-м годам XIX в. точные наблюдения показали, что Уран едва заметно уклоняется от того пути, по которому он должен следовать' с учетом возмущений со стороны всех известных пла­нет. Таким образом, теория движения небесных тел, столь стро­гая и точная, подверглась испытанию.

Леверье (во Франции) и Адаме (в Англии) высказали пред­положение, что, если возмущения со стороны известных планет не объясняют отклонение в движении Урана, значит, на него дей­ствует притяжение еще неизвестного тела. Они почти одновре­менно рассчитали, где за Ураном должно быть неизвестное тело, произво­дящее своим притяжением эти отклонения. Они вычисли­ли орбиту неизвестной планеты, ее массу и указали место на не­бе, где в данное время должна была на­ходиться неведомая пла­нета. Эта планета и была найдена в телескоп на указан­ном ими месте в 1846 г. Ее назвали Нептуном. Нептун не виден невоору­женным глазом. Так, разногласие между теорией и практикой, казалось, подрывавшее авто­ритет материалистической науки, при­вело к ее триумфу.


Список литературы:

1. М.И. Блудов – Беседы по физике, часть первая, второе издание, переработанное, Москва «Просвещение» 1972.

2. Б.А. Воронцов-вельямов – Астрономия !1 класс, издание 19-ое, Москва «Просвещение» 1991.

3. А.А. Леонович – Я познаю мир, Физика, Москва АСТ 1998.

4. А.В. Перышкин, Е.М. Гутник – Физика 9 класс, Издательский дом «Дрофа» 1999.

5. Я.И. Перельман – Занимательная физика, книга 2, Издание 19-ое, издательство «Наука», Москва 1976.