Смекни!
smekni.com

Систематизация и обобщение знаний учащихся по теме "Алгебраические уравнения" в 9 классе (стр. 6 из 7)

Решение системы 3 вызывает у учащихся затруднение. Известными способами эту систему не решить.

3 - Постановка учебной задачи.

Учащиеся формулируют цель урока: “Научиться решать системы новым способом”

Вспоминаем недавно изученный графический способ решения уравнений. Нельзя ли его применить к решению систем. Вспомните определение графика уравнения с двумя переменными.

Работа устно:

С помощью каких преобразований можно построить графики данных элементарных функций.

А)

Б)

В)

Г)

Д)

Е)

Ж)

4 – Построение проекта выхода из затруднений.

Совместное создание алгоритма решения систем:

1. выразить переменную У через Х (если возможно);

2. построить график каждого уравнения;

3. найти координаты точки пересечения графиков.

Координаты любой точки построенного графика являются решением уравнения, следовательно, координаты каждой точки пересечения являются решением системы уравнений.

На доске учащиеся решают систему №3

5 – Первичное закрепление (работа у доски по учебнику)

Решить графически систему уравнений

№233

Решение:

С помощью графиков решите систему уравнений

№236 а

Решение:

Физ. Минутка.

(ведет физорг или валеолог класса).

Самостоятельная работа с самопроверкой. По вариантам. Упражнения взяты из “Сборника заданий для проведения экзамена по алгебре за курс основной школы”

1) Решите графически систему.

1 вар. №203

2 вар. №206

2) С помощью графиков определите: сколько решений имеет система уравнений

1 вар.

2 вар.

Решение №203 – 1 вариант.


Решение №206 вариант 1

№203 вариант 2

№206 вариант 2:

В конце работы выявляются причины ошибок или затруднений.

Работа творческого характера (по группам).

1. Решить систему

2. По готовому рисунку составить систему.

Учащиеся оценивают свое участие в работе групп.

Систематизация знаний:

1. Что нового вы узнали на уроке?

2. Достигли ли вы, поставленной в начале урока, цели?

3. Какую цель вы для себя ставите на следующем уроке?

В конце урока учащиеся сдают листы самооценки учителю.

Домашнее задание: № 302, № 304 или №305.

План-конспект №2. Компьютерные технологии на уроке математики в 9-м классе

Из классической педагогической литературы известно, что наиболее эффективной является такая организация учебного процесса, при которой максимально стимулируются творческие способности учащихся, и используются возможности новых информационных технологий обучения в организации внутреннего диалога учащихся на основе мультимодального взаимодействия.

Урок проходит в кабинете математики, оборудованном компьютерами, связанными локальной сетью в 9 классе с углубленным изучением математики, в котором учащиеся занимаются по подгруппам.

Тема: Метод замены переменной в уравнениях. Исследование структуры уравнений приводимых к квадратным. (2 часа).

1-й час – исследование уравнений высших степеней, имеющих более сложную структуру, чем те, которые изучались в восьмом классе.

2-й час – урок-практикум - решения задач.

Цели:

1) выработать умение учащихся видеть структуру уравнений и выбирать наиболее эффективно замену переменных для их решения на основе анализа коэффициентов уравнения;

2) расширить круг приемов решения уравнений, приводимых к квадратным;

3) углубить теоретические основы подхода к решению уравнений;

4) развить навыки работы с информационными технологиями;

5) активизировать интеллектуальную деятельность учащихся.

Задачи:

1) распознавание уравнений, приводимых к квадратным;

2) обоснование выбора подходящей замены переменных;

3) отработка навыков решения подобных уравнений;

4) повторение способов решения различных типов уравнений, сводящихся к квадратным;

5) развитие умения самостоятельно осуществлять небольшие исследования;

6) тренировка умения работы с электронными учебно-методическими материалами.

Схема урока.

I. Повторение пройденного материала и вопросов, подготавливающих к пониманию новых задач.

II.

1) Методы решения квадратных уравнений:

а) формула корней квадратного трехчлена;

б) выделение полного квадрата;

в) использование теоремы, обратной теореме Виета;

г) разложение на множители;

2) теоретические положения о количестве корней квадратного трехчлена;

3) теоремы о тождественных преобразованиях и равносильности уравнений;

4) метод замены переменной в биквадратных уравнениях.

Форма проведения урока – сочетание объяснения учителя с фронтальной коллективной работой учащихся.

III. Восприятие и первичное осознание нового материала, осмысление связей и отношений в объектах изучения.

Исследование структуры и решение уравнений, сводящихся к квадратным, на следующих примерах:

Объяснение учителя.

1)

;

2)

;

3)

.

Далее №№9.15(а); 9.16(а); 923(а) - решаются учащимися на доске.

Применение учащимися приобретенных знаний в самостоятельном выполнении задания по выбору подходящей замены переменной в решении уравнений, приводимые к квадратным.

Каждый ученик имеет свое рабочее место за персональным компьютером, на котором он получает свой вариант задания, сгенерированный компьютером по числу учеников по образцу подобранному учителем, решает и вводит с клавиатуры свой ответ.

Систематизация и обобщение знаний: После окончания выполнения задания компьютер проверяет ответ и выставляет оценку. В случае удовлетворительной (или неудовлетворительной) оценки ученик имеет возможность изучить правильное решение, запросив на компьютере соответствующую опцию, просмотреть правильное решение и выявить допущенные ошибки. Полученные оценки выставляются учителем в журнал.

IV. Образец вариант задания, получаемого учащимися на этом уроке:

1)

;

2)

;

3)

.

Домашнее задание: №№ 9.14(в, г), 9.16(б, г), 9.23(в, г).

М.А. Галицкий, А.М. Гольдман, Л.И. Звавич “Сборник задач по алгебре” 8 – 9 класс.

2.3. Результаты эксперимента

Цель: Изучитьуровень систематизации и обобщения полученных знаний на завершающем этапе эксперимента.

Для выявления влияния эксперимента, проведенного с детьми экспериментальной группы, мы провели эксперимент с учащимися систематизационной и экспериментальной групп. При этом использовались те же методики, что и в констатирующем эксперименте.

Таблица 1

Данные экспериментального изучения уровня систематизации и обобщения полученных знаний

Контрольная группа Экспериментальная группа
Учащийся, № Количество правильных ответов Учащийся, № Количество правильных ответов

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7

5

5

5

3

3

3

5

3

5

3

3

3

3

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

8

6

5

6

7

4

5

4

5

3

3

3

4

3

3

По данным таблицы мы получили следующие результаты: