Смекни!
smekni.com

Роль умственного приема классификации в формировании математических понятий у младших школьников (стр. 8 из 20)

4. Декартово произведение двух и более множеств.

До сих пор порядок записи элементов множества роли не играли. Однако в практике, зачастую, порядок записи элементов имеет большое значение. Например, порядок букв в слове, или порядок записи однозначных чисел в многозначном числе (23 = 32).

Кортежем длины n называется упорядоченная n – ка (а , а , …а ), где а А ,а А ,…, а А .

Декартовым произведением множеств А х А х…х А называется множество всевозможных кортежей ( а , а ,…а ), где а А , а А,… а А .

Декартово произведение обладает следующими основными свойствами:

1) А х В = В х А;

2) M (A x B) = m (B x A) – количество элементов декартова произведения В х А.

В начальных классах операция умножения натуральных чисел рассматривается как мощность декартова произведения.

Операцию умножения натуральных чисел можно сформировать с помощью такой практической работы.

На парте лежат короткие, средние, длинные палочки красного, синего, желтого и белого цветов. Надо разложить их по цвету и по размеру.

По цвету По размеру

Красные- Короткие – красная, синяя, желтая, белая

Синие - Средние – красная, синяя, желтая, белая

Желтые - Длинные - красная, синяя, желтая, белая

Белые –

В первом случае палочек 3 + 3 + 3 + 3 = 3 х 4, во втором – 4 + 4 + 4 = 4х3.

Так как в обоих случаях были разложены все палочки, то 3 х 4 = 4 х 3. Таким образом, эта практическая работа позволяет сформировать не только смысл операции умножения как мощности декартового произведения, но и переместительное свойство умножения.

5. Разбиение.

Операция разбиения на попарно непересекающееся подмножества характеризуются следующими свойствами:

1) ни одно из подмножеств не пусто;

2) любые два подмножества не имеют общих элементов;

3) объединение всех подмножеств дает данное множество.

Операция деление натуральных чисел опирается на разбиение конечного множества на попарно непересекающиеся равномощные подмножества. Она раскрывается путем рассмотрения задач на деление по содержанию и равные части. Это можно осуществить на примере таких работ.

Пример № 1. Несколько карандашей надо раздать трем ученикам. Сколько карандашей получит каждый ученик и сколько их было?

Сначала раздадим по одному карандашу, потом еще по одному и так далее. Пусть каждый ученик получил по 4 карандаша, тогда всего карандашей было: 4 кар. х 3 =12 кар.

Пример № 2. Несколько карандашей надо раздать детям по 4 карандаша. Сколько учеников получит карандаши и сколько их было всего?

Сначала 4 карандаша дали одному ученику, потом 4 карандаша дали второму и так далее. Пусть 3 ученика получили по 4 карандаша, тогда всего карандашей было : 4 кар. х 3 = 12 кар.

Затем учитель должен обобщить полученные результаты: «В первой задаче мы искали первый сомножитель, а во второй задаче мы искали второй сомножитель. Так как умножение обладает переместительным свойством, то мы выполнили в обеих задачах одну и ту же операцию, которая называется делением». После этого учитель записывает:

4 х 3 = 12; 12 3 = 4;

4 х 3 = 12, 12 4 = 3.

2. Величина

Понятие величины является фундаментальным в школьном курсе математики и, в особенности, в начальном обучении. Ведь исторически работа с величинами и привела к появлению математики как таковой. Рассматривая величину как свойство однородных предметов или явлений «быть сравнимым», учитель может с помощью конкретных предметных действий сформировать у учащихся такие важнейшие понятия, как положительное действительное число, операции над числами и их законы, измерение величин и именованные числа, тесно связать геометрический и арифметический материал.

Величины бывают трех видов: скалярные, аддитивно-скалярные, векторные.

Примером скалярных величин является свойство химических элементов быть сравнимыми по активности. Так, натрий более активен, чем железо. Однако, сказать, на сколько он более активен нельзя, то есть нельзя выполнить операцию сложения: к активности железа нельзя, например, добавить активность свинца и получить активность натрия поэтому скалярные величины не являются той основой, на которой возникла математика.

Аддиктивно-скалярные величины (аддитивность – это наличие операции сложения; аддитивная операция – операция сложения) можно не только сравнивать, но и определять, на сколько один элемент множества, обладающего величиной, больше (меньше) другого элемента этого же множества.

Таким образом, аддитивно-скалярные величины можно складывать и поэтому именно на их основе возникла в результате абстрагирования математика. Примером аддитивно-скалярных величин является множество отрезкой, площадей.

Векторные величины можно сравнивать не только с позиции «столько», «больше». «меньше», но и по направлению. Примерами векторных величин является скорость, ускорение.

В начальных классах специальным предметом изучения являются следующие аддитивно-скалярные величины: количество, длина, площадь, масса, емкость, время.

В дальнейшем, для упрощения, вместо того, чтобы говорить «аддитивно-скалярная величина», или «множество, обладающее величиной», будем говорить просто «величина».

Рассмотрим основные свойства величин.

1. Свойство быть сравнимым.

Это свойство должно формироваться в начальных классах в три этапа на основе предметных действий детей.

а) Визуальное сравнение.

Приведем примеры практических работ.

Пример 1. (рис. 2.6). Приложив полоски, выяснить, какие из них длиннее (рис. 2.6).

Пример 2. Наложив друг на друга два листа бумаги, выяснить, какой из них больше (рис. 2.7).


Рис. 2.7

Пример 3. Взяв в одну руку деревянный шар, а другую металлический шар, определить, какой из них тяжелее (шары одинаковые по размеру).


Пример 4. Сравнить два ведра одинаковой формы и ответить, в какое из них больше поместиться воды (рис. 2.8).


Рис. 2.8

б) Опосредованное сравнение.

Пример 1. Ученикам предлагается сравнить длины двух отрезков, изображенных на доске; определить по рисунку в книге, кто из детей живет ближе к школе.

Чтобы ответить на поставленный вопрос, используются две веревочки. Ими измеряют длины, а затем наложением сравнивают.

Пример 2. Ученикам предлагается сравнить массы двух тел, с этой целью используются рычажные весы.

2). Сравнение с помощью посредников.

Пример 1. Учащимся предлагается сравнить расстояние Евпатория – Симферополь, Евпатория – Киев.

Пример 2. Ученикам предлагается сравнить две площади разной конфигурации (рис. 2.9).


Рис. 2.9


Пример 3. Ученикам предлагается сравнить возраст своих родителей.

В каждом случае ученики придут к выводу, что ни визуально, ни опосредовано провести сравнение невозможно. Они сделают вывод о том, что величины необходимо сначала измерить, а потом сравнить числа, полученные в результате измерения. Тем самым ученики подводятся к пониманию причины возникновения числа.

2. Наличие операции сложения.

Величины можно складывать, то есть имеет место операция сложения. Эта операция имеет такие важные свойства:

1) единственность суммы;

2) коммутативность сложения (переместительное свойство);

3) ассоциативность сложения (сочетательное свойство).

Операцию сложения и ее свойство нужно формировать у учащихся не только на примере такой величины, как количество, но и на примерах других величин.

Пример 1. Ученикам предлагается перевязать большой пакет имеющимися маленькими веревочками.

Ученики связывают обрывки веревок и перевязывают пакет. При этом подчеркивают, что порядок, в котором связываются обрывки веревок, роли не играет (переместительное и сочетательное свойство сложения).

Пример 2. Ученику предлагается угостить соком своих друзей, если у него имеется разное количество сливового сока и грушевого.

Ученик сливает сок в одну посуду и получает грушево – сливовый сок, которым угощает друзей. Подчеркивается, что количество сока не измениться от того, в каком порядке он сливается.

Так как сложение величин является теоретической основой формирования смысла операции сложения, а не нахождения результата сложения, поэтому при рассмотрении данных примеров учитель должен избегать возможности измерения величин, в том числе и пересчета.

3. Умножение величины на натуральное число.

Пол умножением величины а на натуральное число n понимается сумма в одинаковых величин: а + а +…+ а = а n.

Это свойство является теоретической основой операции умножения в начальных классах. Поэтому, при ее формировании необходимо подчеркивать, что одна и та же величина повторяется несколько раз, то есть именованное число нужно ставить при умножении на первое место.

Пример 1. Учащимся предлагается составить полоску из четырех одинаковых полосок и измерить ее. Дети получают в результате измерения 40 см.

Учитель предлагает найти длину полоски не измеряя ее, если известно, что она состоит из четырех одинаковых полосок по 10 см каждая.

Дети записывают: 10 см + 10 см + 10 см + 10см = 40 см.

Учитель обращает внимание на громоздкость записи и знакомит их с другой записью и новой операцией – умножением: 10 см 4 = 40 см.

Учащиеся под руководством учителя делают вывод о том, что в данном случае умножение представляют сумму одинаковых величин, то есть, что умножение есть частный случай сложения.

Пример 2. Задача. Сколько минут отводится ученику на выполнение контрольной работы, если надо решить 5 примеров и на каждый пример отводится 4 минуты?

4 мин x 5 = 15 мин (4 минуты повторятся 5 раз).