Пример 1. Ученикам предлагается записать с помощью уравнения решение такой задачи. Сколько детей взяло яблоки, если в вазе лежало 10 яблок и каждый из детей взял по 2 яблока и осталось в вазе два яблока?
Ученики записывают 10 - 2 х == 2 и определяют, что вместо "х" можно подставить числа 1, 2, 3, 4, 5 (находят область определения). Подбором они убеждаются, что х == 4 является корнем уравнения.
Пример 1. Для отработки умений находить область определения и множество решений неравенства учащимся можно предложить ответить на вопрос: "Какие числа можно подставить в неравенство 8 - х < 3 вместо "х" и при каких из них неравенство превращается в верное числовое неравенство?" (Вместо "х" можно взять любое число, которое меньше 9; при х = б ; 7 ; 8 получается верное числовое неравенство).
Пример 3. Для формирования понятий о равносильных уравнениях (неравенствах) и их свойствах ученикам можно предложить следующее задание.
Найдите область определения и множество решений неравенства 8 - х < 3 (1), Пользуясь неравенством (1), не решая неравенства 8-х+ 4 < 3 + 4 (2) и (8 - х) • 2 < 3 • 2 (3), найдите их области определения и множество решений.
IX. Функция: область определения, область значений, способы заданий.
Определение. Функцией называется такая зависимость переменной у от переменной X , при которой каждому значению х соответствует единственное значение у . Значения, которые может принимать х называются областью определения функции. Значения, которые принимает у называются областью значений функции.
Если функциональное соответствие задается на числовом множестве, то мы имеем числовую функцию.
Числовую функцию, как и любую другую, можно задать аналитически, парами, таблицей, графом, графиком на координатной плоскости. Например, функция у =2х-1 задана аналитически.
В начальных классах функция чаще всего задается словесно (в виде текста задачи) таблицей, выражением, парами.
В начальных классах учитель должен формировать у учащихся понятие об области определения функции, области значений функции, однозначности соответствия, способах задания функции.
Пример. Детям предлагается записать в виде выражения решение следующей задачи.
Сколько килограммов крупы, расфасованной в пакеты по 2 кг осталось перенести детям, если было 20 пакетов, и каждый ребенок берет один пакет?
Дети, записывая 20 - 2 X, учатся задавать функцию аналитически.
Для отработки умений находить область определения учитель предлагает найти наибольшее количество детей, которое необходимо для переноса крупы.
Для отработки умений находить область значений функции учитель предлагает ответить на вопрос задачи, если х = 1; 2; 3; ... ; 10. При этом ученики учатся задавать функцию парами и таблицей:
х | 1 | 2 | 3 | 10 |
20-2х | 18' | 16 | 14 | 0 |
Для формирования понятия об однозначности функционального соответствия учитель задает вопрос: "Может ли остаться 10 кг крупы, если ее переносили трое ребят, шестеро ребят? "Аналогичная работа должна проводиться не только при решении различных задач, в том числе и задач на прямую и обратную пропорциональность, но и при изучении выражений с переменными.
2.3. Реализация основных положений опытно-экспериментальной методики.
Экспериментальная проверка основных положений данного исследования проводилась на базе учебно-воспитательного комплекса «Евпаторийская средняя общеобразовательная физико-математическая школа I – III ступеней № 6 – дошкольное учебное учреждение № 31 1-В (26 человек) и 1-Г(26 человек) классы. Во время экспериментального исследования анализировались полученные результаты, вносились необходимые коррективы.
Объект исследования - процесс формирования математических понятий у учащихся начальных классов.
Предмет исследования – организация учебной деятельности по формированию математических понятий с использованием умственного приема классификации у младших школьников.
Гипотеза исследования базируется на предположении о том, что систематическое и целенаправленное формирование и использование приема умственной деятельности классификации будет способствовать более глубокому и сознательному усвоению математических понятий младшими школьниками.
Цель исследования – заключается в обосновании и реализации методики формирования системы математических понятий у младших школьников с использованием приема классификации.
Экспериментальное исследование состояло из констатирующего, аналитико-поискового, формирующего и заключительного этапов.
Цель констатирующего этапа эксперимента состояла в выяснении уровня сформированности математических понятий у младших школьников.
Для реализации методики были подготовлены соответствующие дидактические материалы и методические указания.
На констатирующем этапе исследования в экспериментальном 1-В и контрольном 1 – Г классах с целью определения уровня сформированности понятий у младших школьников было проведено тестирование, по переработанной методике Л. С. Выготского.
Тест № 1
Задание состоит в следующем: школьнику показывали одну фигуру (№5) красного цвета, определенной формы (экспериментальное понятие гацун), и просили ее запомнить. После этого фигура – образец убиралась, и перед ребенком выкладывался набор из 16 фигур (см. Приложение А рис.1) отличающихся по форме (2 вида), по цвету (красный и зеленый), по величине (2 варианта), и ребенку предлагалось выбрать ту фигуру, которую ему показывали. Время проведения – 5 минут.
В правильности ответа ученик мог убедиться, перевернув фигуру (отмечена +), при неправильном ответе он должен объяснить, почему это не та фигура.
Тест № 2
«Найди прямоугольник»
Задание состоит в следующем: на столе выкладываются четырехугольники (см. Приложение А, рис. 3), ученик должен выбрать из них все прямоугольники (подвести под понятие прямоугольник), которые для сложности были разных вариантов: в форме полоски, положены на высоту, а так же в том виде, к которому школьники уже привыкли. Время - проведения 5 минут.
Эти экспериментальные задания помогали изучить такие особенности учащихся, как умение отвлекаться от несущественных признаков единичных предметов, одновременный анализ предметов по нескольким признакам (основаниям), умение соблюсти координацию объема и содержания классифицируемых классов объектов, удерживать в сознании определение понятия (как совокупность существенных признаков).
По результатам методики были определены три уровня сформированности у детей математических понятий: низкий, средний и высокий.
Первый (самый низкий) уровень выполнения подведения под понятие опирается на односторонний элементарный анализ, на классификацию, или носящую глобально-недифференцированный характер, или опирающуюся только на один признак, не могут определить даже два признака для экспериментального понятия, и поэтому делают множество ошибочных выборов, попеременно ориентируясь то на цвет, то на форму. Эти дети не удерживают положительное и отрицательное подкрепление, в результате чего не могут осуществить классификацию по заданным признакам, подвести под понятие.
Для второго уровня характерно то, что подведение под понятие проходит с опорой на классификацию, которая уже дифференцирована, но осуществляется не сразу, а в результате упражнений. Ученики на этом уровне не способны увидеть связь между подкрепленными признаками, анализ ведется то по одному (форма), то по другому (цвет) признаку, они возвращаются к неподкрепленным признакам и не могут удержать все подкрепленные. Между подкрепленными признаками не могут установить связь. Эти дети способны осуществить классификацию, подвести под понятие, но лишь допустив несколько ошибочных выборов.
Третий уровень основывается на всестороннем анализе и синтезе, классификация проходит по всем заданным основаниям, ученики устанавливают как положительные, так и отрицательные связи, прочно удерживают подкрепленные признаки и отбрасывают неподкрепленные, не возвращаясь к ним, таким образом, подводят под понятие. Характерно то, что при выборе фигурок ученики с этим уровнем владения приемом классификация пытаются формулировать в словах те признаки (основания), на которые надо опираться при подведении под понятие. За выполнение задания на третьем уровне начислялось 2 балла, на втором – 1 балл, на первом – баллов не начислялось.
Результаты эксперимента приведены в таблице (табл. 2.1 и 2.2), они дают основание считать, что для каждого ученика характерен определенный уровень сформированности математических понятий и приема классификации, а также необходимости работы по их формированию.
Таблица 2.1
Результаты констатирующего эксперимента (1 – Г).
№ | Фамилия, имя учащихся | Уровень сформированности понятий |
1 | Андронова Анастасия | II |
2 | Андросюк Дмитрий | II |
3 | Атемов Разим | I |
4 | Бабешко Татьяна | I |
5 | Боймистрюк Роман | I |
6 | Болик Георг | III |
7 | Васильева Людмила | II |
8 | Вашкевич Наталья | II |
9 | Воропаев Вова | II |
10 | Данилов Никита | II |
11 | Дашкова Валентина | I |
12 | Дорогин Иван | II |
13 | Андронова Анастасия | II |
14 | Андросюк Дмитрий | II |
15 | Атемов Разим | I |
16 | Бабешко Татьяна | I |
17 | Боймистрюк Роман | I |
18 | Болик Георг | III |
19 | Васильева Людмила | II |
20 | Вашкевич Наталья | II |
21 | Воропаев Вова | II |
22 | Данилов Никита | II |
23 | Дашкова Валентина | I |
24 | Дорогин Иван | II |
25 | Дубровина Оксана | I |
26 | Яблоненко Саша | I |
Из 26 учащихся в контрольном классе низкий уровень сформированности понятий показало 10 учеников (39 %), средний – 12 (46 %), высокий – 4 (15 %) .