Смекни!
smekni.com

Роль и место физических методов исследования при изучении некоторых разделов химии высокомолекулярных соединений в школе и в вузе (стр. 9 из 12)

Для проведения практической работы использовать, свои таблицы и практическую работу, в учебнике для 11 класса [1].

Распознавание пластмасс следует начать с внешнего осмотра, а затем перейти к исследованию их отношения к нагреванию и горению. Потом испытывают действие на них растворителей.

Распознавание волокон начинают с их сжигания. При этом прослеживают, с какой скоростью происходит горение, исследуют запах продуктов разложения, свойства остатка, который образуется после горения. Затем проверяют действие на волокна кислот, щелочей и растворителей.

Например, в отдельных пакетах под номерами разложены разные пластмассы: № 1– поливинилхлорид; № 2 – полиэтилен; № 3 – полистирол; № 4 – фенол-формальдегидная пластмасса; №5 –капрон. В других пакетах под номерами – образцы волокон: № 1 – шерсть; № 2- хлопок; № 3 – вискоза; № 4 – ацетатное волокно; № 5 – лавсан. Учащиеся берут из каждого пакета образцы волокон и пластмасс и исследуют их (по продуктам сжигания, действию кислот, щелочей и т. д.). После определения данного образца они ставят соответствующий номер в своей таблице.

2. Приведение в порядок своего рабочего места. Выводы по работе, необходимые записи.

III. Закрепление знаний, умений, навыков.

Подготовка к следующей теме. [34, 36].

3.1.1 Констатирующий срез знаний

В качестве среза был проведен письменный опрос на следующие вопросы:

1. Что такое полимеры?

2. Что такое мономер?

3. Что такое степень полимеризации?

4. Что вы понимаете под словом полимеризация?

5. Дайте определение поликонденсации.

6. Отличие полимеризации от поликонденсации.

7. В чем отличие термопластов от термореакторов?

8. Что вы знаете о полимерах?

9. Какие изделия из полимеров вам знакомы?

Результаты ответов как оказалось не так уж и плохи, некоторые получили положительные оценки.

Оценка 2 3 4 5
Количество учеников 4 12 7 3

3.2 Изложение материала в университете

3.2.1Вводное занятие по теме: «Полимеры»

Планируемые результаты обучения: знать основные понятия химии высокомолекулярных веществ (мономер, полимер, структурная звено, степень полимеризации, линейная, разветвленная и пространственная структуры), влияние строения на свойства полимеров. Знать сущность реакций полимеризации и поликонденсации.

Краткое содержание темы. Высокомолекулярные соединения, т.е. соединения с большой молекулярной массой называются полимерами. Низкомолекулярное вещество, из которого синтезируют полимер, называется мономером; многократно повторяющиеся в макромолекуле группы атомов – структурными звеньями.

Напишем уравнение реакции полимеризации пропилена:

n CH2 = CH ® (–CH2–CH–)n

| |

CH3 CH3

Молекула мономера и структурное звено макромолекулы одинаковы по составу, но различны по строению. В молекуле пропилена имеется двойная связь, в структурном звене полипропилена она отсутствует.

Число n в формуле полимера показывает, сколько молекул мономера соединяется в макромолекулу (сколько раз повторяется структурное звено). Оно называется степенью полимеризации.

Макромолекулы полимеров могут иметь различную геометрическую форму:

а) линейную, когда структурные звенья соединены в длинные цепи последовательно одно за другим (полиэтилен, полипропилен);

б) разветвленную (крахмал);

в) пространственную, когда линейные молекулы соединены между собой химическими связями (в вулканизированном каучуку-резине).

Геометрическая форма полимеров существенно сказывается на их свойствах.

Понятие молекулярная масса для полимеров имеет некоторые особенности. В процессе полимеризации в макромолекулы соединяется различное число молекул мономера в зависимости от того, когда произойдет обрыв растущей полимерной цепи. Вследствие этого образуются макромолекулы разной длины и, следовательно, разной массы. Поэтому обычно указываемая для такого вещества молекулярная масса – это лишь ее среднее значение, от которого масса отдельных молекул существенно отклоняется в ту или иную сторону.

Важным свойством полимеров является их высокая механическая прочность, что в сочетании с легкостью, химической стойкостью и обусловливают их широкое применение.

ВМС синтезируют преимущественно двумя способами – полимеризацией и поликонденсацией низкомолекулярных веществ.

Реакция полимеризации – это процесс последовательного соединения одинаковых молекул (мономеров) в более крупные.

Вступать в такие реакции могут соединения, в молекулах которых содержится двойная связь. При разрыве такой связи в молекуле освобождаются две валентности для соединения с другими молекулами, что необходимо для образования ВМС.

Процесс идет постепенно, через образование свободных радикалов. Чтобы началось образование свободных радикалов, к мономеру добавляют инициатор – неустойчивое соединение, способное распадаться на свободные радикалы R. Когда свободный радикал сталкивается с молекулой мономера, его электрон действует на p-связь и образует пару с одним из ее электронов; так устанавливается ковалентная связьрадикала с молекулой мономера. Второй электрон p-связи остается свободным, в результате чего вся частица становится радикалом:


R· + CH2CH ® R: CH2: CH ·

| |

X X


Образовавшийся свободный радикал подобным же образом действует на другую молекулу мономера, присоединяя ее е себе, в результате чего появляется новый радикал:


R: CH2: CH2 · + CH2 CH®R: CH2: CH: CH2: CH ·

| | | |

X X X X

Такое последовательное присоединение молекул в ходе цепной реакции продолжается до тех пор, пока не произойдет обрыв цепи.

Реакция поликонденсации – это процесс образования высокомолекулярных веществ из низкомолекулярных, идущий с отщеплением побочного низкомолекулярного продукта (чаще всего воды).


Реакция осуществляется за счет наличия в молекулах исходных веществ не менее двух функциональных группа атомов.

Например, так образуются пептиды:

В реакцию поликонденсации могут вступать не только вещества с различными функциональными группами в молекуле, но и вещества с одинаковыми функциональными группами. Например, поликонденсация дикарбоновой кислоты с двухатомным спиртом:

O O O O

\ || || ||

C–(CH2)n –C–O–(CH2)m –O–C–(CH2)n–C–... + nH2O.

/

HO

Физические свойства полимеров сильно зависят от степени полимеризации. Кроме того, они зависят от и от того, как соединяются друг с другом молекулы мономера.

Высокомолекулярные соединения, в отличии от низкомолекулярных веществ, могут быть только в двух агрегатных состояниях: твердом и жидком. Полимер из твердого состояния переходит в жидкое в интервале температур. Это объясняется наличием в полимере макромолекул с различной молекулярной массой.

Большинство полимеров в воде не растворяются. Линейные и разветвленные полимеры в органических растворителях набухают, а пространственные – не растворяются и плавятся без разложения. При длительном действии на полимер кислорода воздуха, воды, света и температуры в структуре полимера происходят изменения: полимер «стареет» - большие макромолекулы разрываются. Для предотвращения этого процесса или при необходимости его замедления нужно добавлять различные вещества: антиокислители, фотостабилизаторы и т.д.

Классификация полимеров (по происхождению):

1. природные (каучук, хлопок, лен, белки и т.д.)

2. синтетические (полученные при помощи синтеза).

Полимеры по строению делятся на:

- органические;

- неорганические.

Органическими называют те полимеры, цепь которых состоит из атомов углерода С. Если же участвуют другие атомы, их называют неорганическими.

В зависимости от атомов, участвующих в цепи разделяют на:

- карбоцепные;

- гетероцепные.

Также идет классификация по температуре:

-термопластичные (многократно перерабатываемые: полиэтилен, полипропилен, полистирол);

-термореактивные (вторичная переработка невозможна: фенолформальдегидные полимеры).

В зависимости от конечной формы полимеры также делят на:

1. пластики (стекла, пластмасс)

2. волокна (полиамидные волокна, ткани)

3. жидкие смолы (эпоксидные смолы, жидкие гвозди)

4. эластомеры (резиновые изделия, подошва).

Химическое превращение полимеров – реакции, приводящие к изменению состава, строения или степени полимеризации макромолекул. В зависимости от степени полимеризации химические превращения полимеров условно делят на типы:

1. реакции в основных или боковых цепях макромолекул, не приводящие к изменению их длины, т.е. к степени полимеризации. К ним относятся полимераналогичные превращения и внутримолекулярные реакции;

2. реакции, приводящие к соединению макромолекул друг с другом или с низкомолекулярными веществами с образованием пространственной сетчатой структуры, сопровождающиеся увеличением степени полимеризации;

3. реакции деструкции, сопровождающиеся разрывом макромолекул, т.е. уменьшением степени полимеризации.