Результаты испытаний на удар падающим грузом, например, по методу Гарднера или изогнутой плитой, зависят от геометрии падающего груза и опоры. Их можно использовать только для определения относительного ранжирования материалов. Результаты испытаний на удар не могут считаться абсолютными, кроме случаев, когда геометрия испытательного оборудования и образца соответствуют требованиям конечного применения. Можно ожидать, что относительное ранжирование материалов по двум методом испытаний будет совпадать, если характер разрушения и скорости удара одинаковы [12, 14-17].
Интерпретация результатов испытаний на удар - сравнение методов ISO и ASTM
Ударные характеристики могут в большой степени зависеть от толщины образца и ориентации молекул. Разные толщины образцов, используемых в методах ISO и ASTM, могут весьма значительно повлиять на значения прочности при ударе. Изменение толщины с 3 мм на 4 мм может даже привести к переходу характера разрушения от вязкого к хрупкому из-за влияния молекулярной массы и толщины образца с надрезом при использовании метода Изода, как это продемонстрировано для поликарбонатных смол. На материалы, уже показывающие хрупкий характер разрушения при толщине 3 мм, например, материалы с минеральными и стекловолоконными наполнителями, изменение толщины образца не влияет. Такими же свойствами обладают материалы с модифицирующими добавками, увеличивающими ударную прочность.
Влияние толщины и молекулярной массы образца с надрезом на результаты ударных испытаний поликарбонатных смол по Изоду
Ударная прочность по Изоду ISO 180 (ASTM D256)
Рис. 7 Лабораторный прибор для измерения ударной прочности по Изоду
Испытания образцов с надрезом на ударную прочность по Изоду стали стандартным методом для сравнения ударной прочности пластиков. Однако результаты этого метода испытаний мало соответствуют реакции формованного изделия на удар в реальной обстановке. Из-за разной чувствительности материалов к надрезу этот метод испытаний позволяет отбраковывать некоторые материалы. Несмотря на то, что результаты этих испытаний часто запрашивались как значимые меры ударной прочности, эти испытания проявляют тенденцию к измерению чувствительности материала к надрезу, а не к способности пластика выдерживать удар. Результаты этих испытаний широко используются как справочные для сравнения ударных вязкостей материалов. Испытания образцов с надрезом на ударную прочность по Изоду лучше всего применимы для определения ударной прочности изделий, имеющих много острых углов, например ребер, пересекающихся стенок и других мест концентрации напряжений. При испытаниях на ударную прочность по Изоду образцов без надреза, применяется та же геометрия нагружения, за исключением того, что образец не имеет надреза (или зажат в тисках в перевернутом положении). Испытания этого типа всегда дают более высокие результаты по сравнению с испытаниями образцов с надрезом по Изоду из-за отсутствия места концентрации напряжений.
Ударной прочностью образцов с надрезом по методу Изода является энергия удара, затраченная на разрушение надрезанного образца, деленная на исходную площадь поперечного сечения образца в месте надреза. Эту прочность выражают в килоджоулях на квадратный метр: кДж/м2. Образец вертикально зажимают в тисках ударного копра.
Обозначения ISO отражают тип образца и тип надреза:
ISO 180/1A обозначает тип образца 1 и тип надреза А. Как можно увидеть на рисунке ниже, образец типа 1 имеет длину 80 мм, высоту 10 мм и толщину 4 мм.
ISO 180/1O обозначает тот же образец 1, но зажатый в перевернутом положении (указываемый как "ненадрезанный").
Образцы, используемые по методу ASTM, имеют подобные размеры: тот же радиус скругления у основания надреза и ту же высоту, но отличатся по длине - 63,5 мм и, что более важно, по толщине - 3,2 мм.
Результаты испытаний по ISO определяют как энергию удара в джоулях, затраченную на разрушение испытуемого образца, деленную на площадь поперечного сечения образца в месте надреза. Результат выражают в колоджоулях на квадратный метр: кДж/м2.
Результаты испытаний по методу ASTM определяют как энергию удара в джоулях, деленную на длину надреза (т.е. толщину образца). Их выражают в джоулях на метр: Дж/м. Практический коэффициент пересчета равен 10: т.е. 100 Дж/м равно приблизительно 10 кДж/м2.
Разная толщина образцов может отразиться на различных интерпретациях "ударной прочности", как показано отдельно.
Образцы для измерения ударной прочности
Рис. 8. Метод измерения ударной прочности по Изоду
Ударная прочность по Шарпи ISO 179 (ASTM D256)
Основным отличием методов Шарпи и Изода является способ установки испытуемого образца. При испытании по методу Шарпи образец не зажимают, а свободно устанавливают на опору в горизонтальном положении.
Обозначения ISO отражают тип образца и тип надреза:
ISO 179/1C обозначает образец типа 2 и надрез типа CI;
ISO 179/2D обозначает образец типа 2, но ненадрезанный.
Образцы, используемые по методу DIN 53453, имеют подобные размеры. Результаты по обоим методам ISO и DIN определяются как энергия удара в джоулях, поглощенная испытуемым образцом, деленная на площадь поперечного сечения образца в месте надреза. Эти результаты выражаются в килоджоулях на квадратный метр: кДж/м2.
Методика изучения радиотермолюминесценции (РТЛ) полимеров
Многие неорганические и органические вещества, подвергнутые при низких температурах (обычно при 77 К) проникающей радиации, при последующем разогреве начинают светиться, т.е. спектр их высвечивания находится в видимой области.
Применение метода РТЛ включает в себя три операции: облучение исследуемого образца при низкой температуре, последующий плавный разогрев облученного образца и одновременно с ним регистрацию свечения. При облучении веществ происходит стабилизация электронов и "дырок" в ловушках, которыми являются дефекты их структуры. Рекомбинация зарядов приводит к люминесценции облученного вещества. В зависимости от способа активации зарядов различаются термо-, фото- и другие виды люминесценции. На температурной зависимости интенсивности РТЛ могут быть один или несколько максимумов, что указывает на существование одного или нескольких типов ловушек в данном облученном веществе. Для неорганических веществ эти максимумы в общем случае не связаны с их молекулярной подвижностью.
Характерной особенностью РТЛ органических веществ и в первую очередь полимеров, является то, что максимумы свечения на кривой РТЛ проявляются в тех интервалах температур, где имеют место различные кинетические и структурные переходы. Посредством сравнения значений температур максимумов РТЛ и релаксационных переходов, обнаруженных другими методами (механических и диэлектрических потерь, термомеханических кривых и ЯМР), было показано, что они проявляются в областях размораживания подвижности различных кинетических единиц. Такое совпадение максимумов свечения РТЛ с областями кинетических и структурных переходов в полимерах дает основание считать, что акты рекомбинации зарядов осуществляются за счет размораживания теплового движения кинетических единиц, на которых находятся электронные ловушки или центры свечения. При этом время жизни электрона в ловушке будет определяться временем релаксации кинетической единицы, на которой находятся стабилизированные электроны.
Для каждого полимера характерна вполне определенная кривая высвечивания. Положение максимумов РТЛ зависит от дозы предварительного облучения, с увеличением дозы в результате сшивания полимера температура максимума смещается в сторону высоких температур. Для совместимых смесей полимеров характерно наличие лишь одного максимума РТЛ при температуре стеклования смеси, причем его положение меняется при изменении соотношения компонентов. Кривые РТЛ гетерогенных смесей полимеров представляют собой сумму кривых высвечивания отдельных компонентов, взятых в определенном соотношении. Все это свидетельствует о том, что РТЛ облученных полимеров в первую очередь определяется процессами молекулярного движения. Изучая РТЛ полимеров, удается определить не только температуры структурных и кинетических переходов, но и получить сведения об их характере и об активационных параметрах процессов молекулярного движения.
С помощью метода РТЛ удается надежно зарегистрировать изменение температуры стеклования даже тогда, когда оно составляет всего 2-3 градуса. К достоинствам метода РТЛ относится, несомненно, и то, что образец полимера может быть в любом виде[14, 17].
2.6 Световая (оптическая) микроскопия
Этот метод состоит в том, что исследуемый объект рассматривается в оптическом микроскопе в проходящем или отраженном свете, и в плоскости изображения объективной линзы микроскопа формируется увеличенное изображение предмета.
Обычное наблюдение полимерных образцов в оптическом микроскопе «на просвет» в неполяризованном свете малоинформативное из-за малой разности оптических плотностей различных структурных элементов. Положение существенно улучшается при использовании поляризованного света, поскольку кристаллизация и ориентация полимеров приводят к появлению эффекта двойного лучепреломления.