Поэтому в процессе обучения математике следует всячески поощрять у учащихся желание и способность к догадке. При этом следует каждый раз обращать внимание учащихся на то, что каждая гипотеза, выдвинутая при помощи догадки, нуждается в проверке направдоподобность и в обосновании (если она не будет опровергнуты каким-либо примером).
Интуитивное мышление нередко проявляется в процессе умозаключений по аналогии.
Так, например, пусть нам известно, что центр тяжести однородного треугольника совпадает с центром тяжести трех его вершин (т. е. трех материальных точек одинаковой массы, помещенных в трех вершинах треугольника).
Зная это, мы можем предположить, что центр тяжести однородного тетраэдра совпадает с центром тяжести его четырех вершин. Такая догадка представляет собой «догадку по аналогии». Зная, что треугольник и тетраэдр похожи друг на друга во многих отношениях, мы и высказываем эту догадку. Предоставляем читателю самостоятельно проверить, насколько верна высказанная только что догадка.
Функциональное мышление, характеризуемое осознанием динамики общих и частных соотношений между математическими объектами или их свойствами (и умением это использовать), ярко проявляется в связи с изучением одной из ведущих идей школьного курса математики – идеи функции.
Как известно, одним из центральных требований начальной стадии международного движения за реформу математического образования (возглавлявшегося Ф. Клейном) было требование обращать особое внимание на развитие у школьников функционального мышления, наиболее характерными чертами, которого являются:
а) представление математических объектов в движении, изменении;
б) операционно-действенный подход к математическим фактам, оперирование причинно-следственными связями;
в) склонность к содержательным интерпретациям математических фактов, повышенное внимание к прикладным аспектам математики.
Как показывают исследования, наглядно кинематические и физические представления, лежащие в основе функционального мышления, органически сливаются с формально-логическими компонентами мышления.
Одним из средств развития функционального мышления могут служить системы задач на математическое выражение и исследование конкретных ситуаций с ярко выраженным «функциональным Содержанием».
В общем случае решение такой задачи содержит в себе три момента:
1. В изучаемом явлении выделяют основные, существенные связи, отбрасывая второстепенные, несущественные детали, вводят различного рода упрощения и допущения.
2. Связав объекты, выступающие в изучаемом явлении, с числами или геометрическими образами, переходят от зависимостей между этими объектами к математическим соотношениям – формулам, таблицам, графикам.
3. Полученные математические соотношения исследуют, пользуясь уже известными, выработанными и изученными математическими правилами действий над ними, а результаты исследования истолковывают в терминах и понятиях изучаемого явления.
К сожалению, на практике из-за недостатка времени нередко приходится ограничиваться неполными задачами, содержащими только некоторые из перечисленных выше элементов. Какими именно, зависит от возраста учащихся и преследуемых учителем целей.
Нетрудно обнаружить, что разновидности математического мышления являются не чем иным, как специфическими формами - проявления диалектического мышления в процессе изучения математики. Можно, например, указать на тот факт, что так называемое функциональное мышление является адекватным осознанию изменчивости, взаимосвязи и взаимозависимости математических понятий и соотношений, что характерно для диалектического мышления.
Известно также, что наряду с задачей развития логического мышления, составляющей одну из задач обучения математике, в школьном обучении должна решаться не менее важная, хотя и более общая задача – задача воспитания логической грамотности. Содержание понятия «логическая грамотность» доставляют такие логические знания и умения, которые дают возможность для успешного обучения в школе, для дальнейшего обучения и самообразования, для успешной общественно полезной практической деятельности и повседневной жизни. Исследования Л. Никольской показали, что от выпускников средней школы требуется овладение следующими логическими знаниями и умениями: умения определять известные понятия, классифицировать, понимать смысл основных логических связок, распознавать логическую форму математических предложений, доказывать утверждения и обнаруживать логические ошибки, организовывать свою деятельность в соответствии с внутренней логикой ситуации, мыслить критически, последовательно, четко и полно, владеть основными мыслительными приемами. Нетрудно обнаружить, что в понятие логической грамотности вкладываются не только соответствующие знания и умения, но и сформированность многих качеств научного мышления. Поэтому задача воспитания логической грамотности правомерно рассматривается как важный элемент общей культуры мышления.
Развитие же логического мышления учащихся в процессе обучения математике есть, прежде всего, развитие теоретического мышления, которое представляет собой один из важнейших аспектов развития диалектического мышления. В самом деле, не только в ходе обучения и развития, но и в ходе воспитания, и в особенности в процессе формирования диалектико-материалистического мировоззрения школьников, предполагается целенаправленная работа учителя по развитию логического мышления, основанная на самом содержании учебного материала и его методологии. Конечным итогом обучения любому предмету (в том числе и математике) должно быть подведение учащихся к наиболее общим философским выводам о видах и формах существования материи. При этом важно, чтобы эти выводы и обобщения были сделаны самими учащимися в процессе размышления над логикой тех или иных посылок и следствий, в процессе изучения конкретного учебного предмета, под руководством учителя.
Таким образом, с научной точки зрения говорить о вышеуказанных типах мышления как о компонентах, присущих только математическому мышлению, было бы неверно.
Вместе с тем с дидактических позиций выделение этих компонентов математического мышления возможно и даже целесообразно, т. е. целенаправленная работа учителя по формированию у школьников функционального, логического, интуитивного и т. д. мышления реализует задачу математического развития учащихся в целом.
Использование условной терминологии дает возможность ориентировать учителя на ту или иную сторону развития математического мышления у школьников в соответствующих методических рекомендациях. Так, обратимся еще раз, к примеру, упомянутому ранее. Говоря о необходимости развития у учащихся абстрактного мышления, можно рекомендовать учителю, приступающему к преподаванию систематического курса геометрии, начать с рассмотрения реальной ситуации – задачи проведения трубопровода между двумя пунктами. Сам трубопровод представляет собой реальный объект, обладающий самыми различными, важными в практическом смысле свойствами: весом отдельных звеньев, качеством металла, размерами, формой, протяженностью, качеством покрытия, пропускной способностью и т. д.
Начиная проектировать строительство трубопровода, инженер-конструктор, прежде всего, будет интересоваться протяженностью и трассой, по которой он будет проложен. На этом уровне конструктор отвлекается от всех других свойств этого объекта, обращая внимание лишь на названные выше свойства; возникает абстрактная модель трубопровода в виде геометрической линии. Руководствуясь оптимальными условиями эффективной работы трубопровода, инженер начинает изучать вопрос о необходимой для этого форме и размерах трубопровода, не интересуясь теперь тем, по какой трассе он будет проложен. Возникает новая абстрактная модель этого же объекта, представленная в виде геометрического тела. Прораб, который руководит обкладкой трубопровода изоляционным материалом (или окраской трубопровода, защищающей его от коррозии), имеет дело уже с другой абстрактной моделью трубопровода: он рассматривает его как геометрическую поверхность. Решение этой и других аналогичных ей задач устанавливает полезность рассмотрения среди многообразных свойств объекта таких свойств, как размеры, форма и положение в пространстве. Возникает целая отрасль научного знания об объектах реальной действительности, в которой изучаются именно эти свойства реальных объектов, называемая геометрией.
Таким образом, тезис В. И. Ленина о том, что «диалектика вещей создает диалектику идей...», имеет отношение, но только к анализу природы абстракции, но и к методам обучения математике. Говоря о том, что в процессе обучения математике необходимо развивать абстрактное мышление школьников, мы, в частности, имеем в виду широкое использование методических приемов, аналогичных вышеприведенному.
В состав математического мышления включаются мыслит ильные умения, адекватные известным методам научного познания. В практике обучения математике отвыступают не столько как методы математической деятельности, сколько как комплекс средств, необходимых для усвоения учащимися математики и развития у них качеств, присущих математическому мышлению. Эти мыслительные умения могут проявиться (и формироваться) в обучении на уровнях эмпирического и научно-теоретического мышления.
Наряду со спецификой математического мышления справедливо P3Дичать специфику физического, технического, гуманитарного и других видов мышления. Именно в силу этой специфики в процессе познания конкретных наук (и обучения конкретным учебным предметам) активизируется развитие того или иного компонента мышления вообще, усиливается роль того или иного приема мыслительной деятельности, того или иного метода познания.