Смекни!
smekni.com

Развитие логического мышления учащихся при решении задач на построение (стр. 27 из 28)

Смогоржевский, А.С. Линейка в геометрических построениях, 1957.

Степанов, В.Д. Актуальные вопросы обучения геометрии в средней школе: Межвуз. сб. науч. тр / Владимир. гос. пед. ин-т им. П.И. Лебедева-Полянского; [ред. кол.: В.Д. Степанова (отв. ред.) и др.] – Владимир: ВГПИ, 1989 – 94 с., ил.

Столяр, А.А. Методика преподавания математики в средней школе: Общая методика / Учеб. пособие по спец. «Математика» и «Физика»; сост. А.А. Столяр, Р.С. Черкасов. – М.: просвещение, 1985 – 336 с.

Тесленко, И.Ф. О преподавании геометрии в средней школе: (По учеб. пособию А.В. Погорелова «Геометрия 6-10») Кн. для учителя. – М.: Просвещение, 1985 – 95 с., ил.

Фетисов, А.И. Методика преподавания геометрии в старших классах средней школы / под ред. А.И. Фетисова: пособие для учителя – М.: Просвещение, 1967 – 272 с.

Фурман, А.В. влияние особенностей проблемной ситуации на развитие мышления учащихся. // Вопросы психологии, 1985 – №2 – с. 68-72.

Четверухин, Н.Ф. Изображение фигур в курсе геометрии: пособие для учителей и студентов – М.: УЧПЕД ГИЗ, 1958.

Четверухин, Н.Ф. Методы геометрических построений, 1952.

Чистякова, Г.Д. Мышление: его закономерности и условия развития. // Биология в школе – 1989 – №5 – с. 18-21.

Чистякова, Г.Д. Учить думать: [О развитии мышления школьников] // Биология в школе – 1989 – №6 – с. 23-26.

Шерпаев, Н.В. Графическая система для геометрических построений. // Математика в школе. – 1988 – №5 – с. 44-48.

Якиманская, И.С. Знания и мышление школьника. – М.: Знание, 1985 – 80 с.

Якиманская, И.С. Психологические основы математического образования: учеб. пособие для студ. вузов – М.: Академия, 2004 – 319 с.

ПРИЛОЖЕНИЯ

ТЕМА 1. ЧТО ТАКОЕ ЗАДАЧИ НА ПОСТРОЕНИЕ.

ПОСТРОЕНИЕ ТРЕУГОЛЬНИКА С ДАННЫМИ СТОРОНАМИ (1 Ч)

Комментарий для учителя

В результате изучения пунктов учащиеся должны:

знать алгоритм решения задачи па построение треугольника по трем сторонам;

уметь его применять при решении конкретных задач с числовы­ми или геометрически заданными условиями.

Методические рекомендация к изучению материала

Учащиеся уже знакомы из курса математики VI класса с ре­шением задачи на построение треугольника по трем сторонам. По­этому изучение нового материала можно начать с решения зада­чи 17 (1):

«Постройте треугольник с данными сторонами а = 2 см, b= 3см, с =4 см».

Построенный треугольник обозначить ΔАВС, обратив внима­ние учащихся на традиционное соответствие обозначений, – сто­рона а лежит против угла А, b–против

В, с – против
С.

Затем можно показать учащимся, что стороны треугольника могут быть заданы геометрически – данными отрезками а, b, с (рис. 1), и разобрать с ними общий алгоритм решения задачи.

Рис. 1

Следует обратить также внимание учащихся, что последняя фраза в решении: «Треугольник АВС имеет стороны, равные а, b, с – есть не что иное, как доказательство того, что построен имен­но искомый треугольник. После этого можно предложить учащим­ся решить задачу:

«Постройте равносторонний треугольник по его стороне».

Примерное планирование изучения материала

В классе – провести краткую беседу о том, что такое за­дачи на построение, разобрать решение задачи 5.1. решить за­дачи 17 (1), 19; дома – вопрос 10, задачи 17 (2), 18.

Указания к задачам

К пункту относятся задачи 16 – 20.

19. Задачу рекомендуется решить в классе. Если она будет за­дана на дом, то следует дать указание: решение начать с постро­ения окружности.

Рис. 2

Дано: а, b, R.

Решение. Проведем окружность данного радиуса (рис. 2). Выберем на окружности точку С и из этой точки как из центра сделаем две засечки радиусами а и b. Получим точки А и В. Δ АВС искомый. У него данные попоны ВС = а, АС = b. Описанная окружность имеет радиус R.

Для того чтобы задача имела решение, стороны а и bдолжны быть меньше диаметра окружности (a<2R, b<2R).

20. Дано: R, точки А, В.

Решение. Проведем две окружности радиуса Rс центрами в точках А и В. Точки пересечения этих окружностей являют­ся центрами искомой окружности.

Исследование. Если АВ > 2R, то задача не имеет ре­шения.

Если АВ = 2R, то задача имеет одно решение: центр окруж­ности – середина отрезка АВ.

Если АВ<2R, то задача имеет два решении: обе точки пе­ресечения проведенных окружностей служат центрами искомых окружностей.

На примере этой задачи учащимся можно дать представление об этапе исследования, о различном числе решений задач на по­строение. Для этого целесообразно решить задачу 20 в классе, за­готовив на доске три исходных рисунка: отрезок, равный R, и точ­ки А и В, причем: 1) АВ<2R; 2) АВ = 2R; 3) АВ > 2R. Реше­ние у доски одновременно проводится силами трех учащихся.

Примечание. Задачу можно предложить учащимся также после изу­чения теоремы 5.6, решив се с помощью метода геометрических мест.

ТЕМА 2. ПОСТРОЕНИЕ УГЛА, РАВНОГО ДАННОМУ (1 ч)

Комментарий для учителя

В результате изучения пункта учащиеся должны:

знать алгоритм задачи на построение угла, равного данному;

уметь применять алгоритм при решении задачи на построениетреугольников по двум сторонам и углу между ними, по стороне идвум углам и т. п.

Методические рекомендации к изучению материала

Начать изучение нового материала можно с решения задачи на построение треугольника типа 21 (1, а):

«Постройте треугольник АВС по двум сторонам и углу между ними: АВ = 5 см, АС = 6 см,

А = 400».

Решение этой задачи знакомо учащимся из курса математики VI класса.

Затем можно предложить учащимся решить ту же задачу, од­нако данные задать геометрически:

«Постройте треугольник АВС по двум сторонам с, bи углу меж­ду ними

» (рис. 3).

Рис. 3

Для того чтобы решить эту задачу, нам надо построить угол А, равный данному углу

.

Далее учащимся излагается алгоритм решения задачи 5 (2).

После этого можно предложить учащимся решить задачу:

«Постройте равнобедренный треугольник по основанию и углу, прилежащему к основанию».

Примерное планирование изучения материала

В классе – разобрать решения за­дач 5 (2), 21 (1 а; 2 б), 22 (2); дома – вопрос 11. задачи 22 (1). 23.

Указания к задачам

К пункту относятся задачи 21–23.

ТЕМА 3. ПОСТРОЕНИЕ БИССЕКТРИСЫ УГЛА.

ДЕЛЕНИЕ ОТРЕЗКА ПОПОЛАМ (1 ч)

Комментарий для учителя

В результате изучения пунктов учащиеся должны:

знать алгоритмы решения задач на деление угла и отрезка пополам;

уметь решать несложные задачи па построение с исполь­зованием этих алгоритмов.

Методические рекомендации к изучению материала

1°. При изложении учащимся решения задачи 5.3 (построе­ние биссектрисы угла) можно более подробно остановиться на до­казательстве того факта, что в результате построения действитель­но получились равные утлы.

В самом деле, Δ АВD = ΔАСD по третьему признаку равенства треугольников. Из их равенства следует, что

DAB =
DAC (рис. 4).

Рис. 4 Рис. 5

2о. При решении задачи на деление отрезка пополам (зада­ча 5.4) отрезки АС, ВС, АС1и ВС1строятся равными отрез­ку АВ (рис. 5). При доказательстве этот факт не учитывается. Действительно, равенство треугольников САС1и СВС1по треть­ему признаку можно доказать и без этого. Можно доказать, что точка О – середина отрезка АВ и с учетом конкретного построения, данного в учебном пособии. Приведем это дока­зательство. По построению АС = СВ = АС1 = С1В = АВ, т. е. ΔАСВ и ΔАС1В равносторонние; следовательно,

САВ =
С1АВ = 60°, а
САС1 = 120о. ΔАСС1 равнобедренный,
АСС1 =
АС1С = (1800 – 1200):2 = 300,
ВСО =
АСВ –
АСС1 = 600 – 300 =
АСС1, т. е. СО – биссектриса угла С в равнобедренном треугольнике АВС: следовательно, она медиа­на: ВО = АО.