Смекни!
smekni.com

Развитие логического мышления учащихся при решении задач на построение (стр. 16 из 28)

4. Все учащиеся без исключения не могут мысленно создать образ предмета и рассмотреть его с разных сторон «в воображении».

5. Как итогом всех этих фактов можно отметить то, что учащиеся больше предпочитают заниматься алгеброй, чем геометрией.

2.2. Характеристика задач на построение.

В преподавании математики большое значение при­обретают вопросы, связанные с обучением учащихся геометрическим построениям (выполнение наиболее рас­пространенных геометрических построений и обучение решению задач на построение).

Решая задачи на построение, учащиеся приобретаютпервые теоретические и практические основы «графической грамотности», знакомятся с наиболее употребитель­ными приемами их решения, с инструментами, исполь­зуемыми в различных условиях работы (о чертежно-конструкторской практике, при разметке, при выполне­нии построений на местности). У них развиваются пространственное воображение, конструктивные способно­сти, сообразительность, изобретательность, т. е. такие качества, которые необходимы работникам многих про­фессий.

Доказательство правильности решения задачи и ее исследование способствуют лучшему усвоению учащими­ся теоретического материала, развитию их логического мышления.

Обучение геометрическим построениям в школе имело до последнего времени много недостатков. Так, уча­щиеся поздно знакомились с геометрическими построениями (в VI классе ими занимались лишь в конце учебного года). Приемы решения задач на построение часто не отвечали требованиям практики: какправило, изуча­лись построения, выполняемые только циркулем и линейкой, а другие чертежные инструменты практически не использовались; мало уделялось внимания распространенным построениям, хотя обоснование их соот­ветствовало программе по геометрии и целесообразность применения этих построений на уроках математики, чер­чения и других предметов не вызывала сомнения; при рассмотрении геометрических построений не уделялось должного внимания установлению связи между приема­ми построений (на бумаге, при разметке, на местности) и использованием соответствующих инструментов.

2.2.1. Определение задачи на построение.

Задачей на построение называется предложение, ука­зывающее, по каким данным, какими средствами (инст­рументами) и какой геометрический образ (точку, пря­мую, окружность, треугольник, совокупность точек и т. д.) требуется найти (начертить, построить на плоскости, на­метить на местности и т. п.) так, чтобы этот образ удо­влетворял определенным условиям.

Будем считать средствами построения циркуль и одно­стороннюю линейку; вопрос о дополнении этих инстру­ментов чертежным прямоугольным треугольником будет рассмотрен далее.

Задача на построение может быть выражена с по­мощью чертежа-задания. Чертеж-задание включа­ет в себя данные элементы и требование задачи. Рассмот­рим примеры.

1. Построить треугольник по основанию а, углу при основании

В=βи высоте на основание hа(рис.6)

2. Построить окружность данного радиуса r, проходящую через две данные точки А и В (рис.7).

Чертеж-задание выделяет из элементов плоскости данные элементы. При этом возможны два случая: 1) дан­ные элементы являются уже построенными (пример 2, точки А и В), и в этом случае перемещение их по пло­скости невозможно (данные элементы определены по по­ложению); 2) данные элементы лишь могут быть постро­ены (пример 1 – отрезки а и hа, угол В, пример 2 – от­резок r); в этом случае подразумевается, что элементы могут быть построены в «любом месте» плоскости (дан­ные элементы не определены по положению).

Решить задачу на построение при помощи циркуля и линейки – значит свести ее к конечной сово­купности пяти элементарных построений, которые заранее считаются выполнимыми:

1) построение прямой линии через две известные точки:

Дано:Дано:

Построить треугольник Построить окружность

АВС радиуса r, проходящую

через точки А и В

Рис. 6 Рис. 7

2) построение точки пересечения двух известных пря­мых (если эта точка существует);

3) построение окружности известного радиуса с цент­ром в известной точке;

4) построение точек пересечения известной прямой и известной окружности (если эти точки существуют);

5) построение точек пересечения двух известных окружностей (если такие точки существуют).

Термин «известный элемент» означает, что этот элемент либо дан, либо получен в предыдущих построениях, либо выбран произвольно.

Сведения к каждой задаче к элементарным построениям практически неудобно, так как делает решение громоздким. Иногда удобнее сводить задачи к так называемым основным построениям. Выбор некоторых построений в качестве основных в известной мере произволен.

Характеристика чертежа-задания показывает, что за­дачи на построение делятся на два существенно различ­ных вида:

Задачи «метрические», в которых требуется построить геометрический образ по данным элементам, имеющим определенные размеры, но не определенными по положению на плоскости. Следовательно, и требуемый в задаче геометрический образ может занимать произволь­ное положение на плоскости (пример 1).

Задачи «положения», в которых построение требуемого геометрического образа выполняется на осно­ве данных элементов, из которых хотя бы один определен по положению на плоскости. Следовательно, и требуемый геометрический образ должен занимать определенное по­ложение на плоскости (относительно данных элементов, пример 2).

2.2.2. Некоторые вопросы теории геометрических построений.

В теории геометрических построений каждый инстру­мент выполняет свойственную только ему операцию. Описание этой операции является его абстрактной характеристикой и дает возможность указать на те эле­менты чертежа, которые могут быть построены при од­нократном использовании того или иного инструмента.

Обычно на практике несколько «абстрактных» инст­рументов объединяются в один (например, чертежный треугольник является комбинацией односторонней ли­нейки, прямого и двух острых углов). Часто также один инструмент используется для выполнения двух (или не­скольких) совершенно различных операций (например, линейка используется для построения прямой, проходя­щей через две заданные точки, и общих касательных к двум данным окружностям). Это дает возможность зна­чительно сократить число используемых инструментов.

Укажем характерные операции для наиболее распро­страненных в школьной практике чертежных приборов и на те элементы чертежа, которые могут быть получены при однократном их использовании.

Циркуль. Характерная для циркуля операция – проведение окружности данным (или произвольным) ра­диусом с центром в данной (или произвольной) точке.

Таким образом, циркулем могут быть построены:

а) окружность данного радиуса с центром в данной точке (радиус может быть задан двумя точками);

б) дуга окружности данного радиуса с центром в данной точке.

Линейка. Характерная операция для чертежной линейки – проведение прямой через две дан­ные точки.

На практике линей­кой пользуются также для построения к дан­ной окружности каса­тельной (рис. 8), проходящей через за­данную вне ее точку, и для построения общих внешних и внутренних касательных к двум окружностям.

Рис. 8

Теоретически эти опе­рации так же строги, как и проведение прямой через две данные точки. Практическая точность в большинстве случаев вполне удовлетворительна. Этот прием часто используется в чертежных работах и при разметке. Итак, при помощи линейки могут быть построены:

а) прямая, проходящая через две данные точки;

б) отрезок прямой, ограниченный двумя данными точками;

в) луч, проходящий через данную точку и имеющий начало в другой данной точке;

г) касательная к данной окружности, проходящая через данную вне окружности точку;

д) внешние и внутренние касательные к двум данным окружностям.

Чертежный треугольник обладает всеми свойствами односторонней линейки. Следовательно, с помощью чертежного треугольника могут быть получены те же элементы, что и с помощью линейки, а также прямая, проходящая через данную точку и образующая с данной прямой угол, равный одному из углов чертежного треугольника.

Транспортир. Характерной операцией для тран­спортира является построение точки, лежащей на луче, проходящем через данную на прямой точку и образующем заданный угол с этой прямой (рис. 9).

Рис. 9

Абстрактная характеристика каждого инструмента может быть использованы для выяснения вопроса о разрешимости задач на построение теми или ины­ми инструментами.

С этой целью в теорию геометрических построе­ний вводится понятие класса конструктивных элементов. К этому клас­су относятся все заданные элементы, а также: прямая, если она определяется двумя конструктивными точками; окружность, если она определяется конструктивным цен­тром и конструктивным радиусом (пара конструктивных точек); точка, лежащая на луче, проходящем через за­данную на конструктивной прямой точку и образующем с этой прямой заданный угол, и, наконец, точки, являю­щиеся пересечением конструктивных линий (прямых и окружностей).

Очевидно, что каждый набор инструментов имеет свой класс К конструктивных элементов.

На основании этого может быть установлен следую­щий критерий разрешимости задачи на построение.