Смекни!
smekni.com

Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике (стр. 6 из 11)

Доказательство: (k +

)2 = k2 + 2 • k
+
= k2 +
+
.

2) Дано: число k +

, где k – нечетное число. Доказать: (k +
)2 = k2 + +
+
(в данном случае k на единицу меньше числа k).

Доказательство: k = k’ + 1, следовательно,

(k +

)2 = k2 +
+
= k2 +
+
+
= k2 +
+
.

1) k – четное число

.

2) k – нечетное число

.

2.2 Приемы устных вычислений, основанные на законах и свойствах арифметических действий

2.2.1 Сложение

1. Замена нескольких слагаемых их суммой (сочетательный закон).

1) 187 + 247 + 153 = 187 + (247 + 153) (группу слагаемых заключаем в скобки и складываем, на основании сочетательного закона) = 187 + 400 = 587.

2) 16,53 + 4,47 + 9,84 = (16,53 + 4,47) + 9,84 = 21 + 9,84 = 30,84.

2. Перестановка слагаемых (переместительный закон).

1) 238 + 487 + 362 = 238 + 362 + 487 (делаем перестановку слагаемых, применяя переместительный закон, чтобы получить круглое число при сложении) = (238 + 362) + 487 (группу слагаемых заключаем в скобки и складываем на основании закона сочетательности) = 600 + 487 = 1087.

2) 3,57 + 4,68 + 6,43 = 3,57 + 6,43 + 4,68 = (3,57 + 6,43) + 4,68 = 14,68.

3) 235 + 47 + 7 + 265 + 3 + 53 = 235 + 265 + 47 + 53 + 7 + 3 = (235 + 265) + (47 + 53) + (7 + 3) = 500 + 100 + 10 = 610.

4) 8,3 + 3,85 + 9,7 + 5,15 + 2,25 = 8,3 + 9,7 + 3,85 + 5,15 + 2,25 = (8,3 + 9,7) + (3,85 + 5,15) + 2,25 = 18 + 9 + 2,25 = 29,25.

Близок к указанному способу прием перемещения единиц. Например:

1) 1347 + 2235 = 1347 + 33 + 2202 = (1347 + 33) + 2202 = 1380 + 2202 = 3582.

2) 13,98 + 7,12 = 13,98 + 0,02 + 7,1 = (13,98 + 0,02) + + 7,1 = 14 + 7,1 = 21,1.

Для упрощения вычислений мы разбивали слагаемое на части с целью привести вычисления к сложению целых чисел или круглых десятков, применяя сочетательный закон.

3. Прибавление суммы к числу.

1) 384 + (416 + 548) = 384 + 416 + 548 (на основании следствия сочетательного закона) = (384 + 416) + 548 (сочетательный закон) = 800 + 548 (правило порядка действий) = 1348.

Итак, правило прибавления суммы можно сформулировать следующим образом: чтобы прибавить к числу сумму, достаточно прибавить к нему одно за другим все слагаемые.

2) 3,64 + (4,36 + 9,78) = 3,64 + 4,36 + 9,78 = (3,64 + 4,36) + 9,78 = 8 + 9,78.

4. Прибавление числа к сумме.

1) (337 + 488) + 663 =663 + (337 + 488) (переместительный закон) = 663+ + 337 + 488 (правило прибавления суммы) = (663 + 337) + 488 (сочетательный закон) = 1000 + 488 = 1488.

Примененное здесь свойство сложения формулируется так: чтобы к сумме чисел прибавить число, достаточно прибавить его к одному из слагаемых.

2) (4,55 + 6,89) + 5,45 = (4,55 + 5.45) + 6,89 = 10 + 6,89 = 16,89.

5. Прибавление к сумме другой суммы.

1) (327 + 684 + 168) +(473 + 316 + 132) = (327 +684 + 168) + 473 + 316 + + 132 = 327 + 684 + 168 + 473 + 316 + 132 (правило прибавления суммы к числу) = 327 + 473 + 684 +316 +168 + 132 (переместительный закон) = (327 + 473) + + (684 + 316) + (168 + 132) (сочетательный закон) = 800 + 1000 + 300 = 2100.

2) (12,24 + 27,58) + (37,76 + 2,42) = (12,24 + 37,76) + (27,58 + 2,42) = 50 + 30 = 80.

2.2.2 Сложение и вычитание

1. Перестановка членов ряда сложений и вычитаний (перестановка членов алгебраической суммы).

1‑й случай.

1)

(если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения)
(сочетательность сложения)
(переместительность сложения)
(следствие сочетательного закона)
(если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число останется без изменения) = 5000 + 579 (порядок действий) = 5579. Итак,
.

Результат ряда сложений и вычитаний не меняется от перемены порядка членов ряда (при этом каждый член ряда остается в его прежней роли слагаемого или вычитаемого).

При введении отрицательных чисел, обоснование решения подобного примера весьма просто: для членов алгебраической суммы справедливы переместительный и сочетательный законы сложения.

2‑й случай.

2)

(если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число не изменится)
(первый случай переместительности членов ряда сложений и вычитаний)
(если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
. Итак,
.

2. Прибавление разности к числу (первый случай сочетательности членов ряда сложений и вычитаний).

(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
(сочетательный закон)
(производим сложение и вычитание). Итак,
.

При решении подобных примеров применяется следующее правило: чтобы к числу прибавить разность, достаточно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.

В этом случае правило может быть сформулировано так: чтобы к числу прибавить разность, достаточно из данного числа вычесть вычитаемое и к полученному числу прибавить уменьшаемое.

3. Вычитание из числа суммы (второй случай сочетательности членов ряда сложений и вычитаний).

(если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число не изменится)
(на том же основании) =
(переместительный и сочетательный законы)
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
. Итак,
.

Чтобы из числа вычесть сумму, достаточно вычесть из него одно за другим каждое слагаемое.

4. Вычитание из числа разности (третий случай сочетательности членов ряда сложений и вычитаний).

1)

(если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения)
(на том же основании)
(переместительность членов ряда сложений и вычитаний)
(сочетательность членов ряда сложений и вычитаний)
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) =
. Итак,
.

Чтобы из числа вычесть разность, достаточно вычесть уменьшаемое и затем прибавить вычитаемое.