Таким образом, вычислительные навыки нужны и при изучении программного материала в школе, и в повседневной жизни. Кроме того, они окажутся полезными для прикидки ожидаемого результата не только в учебной деятельности, но и в жизни. Именно поэтому учить учащихся быстро, правильно и рационально считать в школе необходимо и не только на уроках, но и на внеклассных занятиях по математике.
В методике математики различают устные и письменные приемы вычисления. К устным относят все приемы для случаев вычислений в пределах 100, а также сводящихся к ним приемы вычислений для случаев за пределами 100 (например, прием для случая 900·7 будет устным, так как он сводится к приему для случая 9·7). К письменным относят приемы для всех других случаев вычислений над числами большими 100.
Устная работа на уроках математики в младших классах, имеет большое значение – это и беседы учителя с классом или отдельными учениками, и рассуждения учащихся при выполнении тех или иных заданий и т.п. Среди этих видов устной работы можно выделить так называемые устные упражнения. Ранее они сводились в основном к вычислениям, поэтому за ними закрепилось название «устный счет». И хотя в современных учебниках содержание устных упражнений весьма разнообразно и велико, за счет введения алгебраического и геометрического материала, а также за счет большого внимания к свойствам действий над числами и величинами и других вопросов, название «устный счет» по отношению к устной форме проведения упражнений сохранилось до сих пор. Это, по мнению В.С. Кравченко, приводит к некоторым неудобствам, так как термин «устный счёт» используется, кроме того, и в своём естественном смысле, то есть вычисления, производимые устно, в уме, без записей. В связи с этим вместо термина «устный счёт», удобнее пользоваться термином «устные упражнения».
Как пишет педагог О.П. Зайцева в своей статье «Роль устного счета в формировании вычислительных навыков и развития личности ребенка» важность и необходимость устных упражнений доказывать не приходиться. Значение их велико в формировании вычислительных навыков и в совершенствовании знаний по нумерации, и в развитии личностных качеств ребёнка. Создание определённой системы повторения ранее изученного материала дает учащимся возможность усвоения знаний на уровне автоматического навыка. Устные вычисления не могут быть случайным этапом урока, а должны находиться в методической связи с основной темой и носить проблемный характер.
Для достижения правильности и беглости устных вычислений на каждом уроке математики необходимо выделять 5–10 минут для проведения упражнений в устных вычислениях, предусмотренных программой каждого класса.
Устные упражнения проводятся в вопросно-ответной форме, все учащиеся класса выполняют одновременно одни и те же упражнения. Устные упражнения важны и ещё и тем, что они активизируют мыслительную деятельность учащихся; при их выполнении активизируется, развивается память, речь, внимание, способность воспринимать сказанное на слух, быстрота реакции.
В сочетании с другими формами работы, устные упражнения позволяют создать условия, при которых активизируются различные виды деятельности учащихся: мышление, речь, моторика. И устные упражнения в этом комплекте имеют большое значение.
Так как устные упражнения или устный счёт это этап урока, то он имеет свои задачи:
1) воспроизводство и корректировка определённых ЗУН учащихся, необходимых для их самостоятельной деятельности на уроке или осознанного восприятия объяснения учителя;
2) контроль учителя за состоянием знаний учащихся;
3) психологическая подготовка учащихся к восприятию нового материала.
Так как уроки математики в младших классах как правило имеют кроме основной задачи, связанной с изучением текущего материала, еще ряд задач, относящихся к закреплению пройденного материала и подготовке к новым вопросам, то с этой точки зрения и подбираются упражнения к уроку, продумывается вид устных упражнений.
Для эффективного использования устных упражнений, нужно правильно определить их место в системе формирования понятий и навыков.
Устные упражнения – неотъемлемая часть урока математики. Они могут проводится как вначале урока, так и на любом его этапе. Остановимся на устных упражнениях, проводимых в начале урока.
Наиболее часто устные упражнения – первый этап урока, причем не только в 5–6-х, но и в старших классах.
Цель этого этапа: во-первых, подготовить учащихся к продуктивной работе на всем протяжении урока, значит, среди этих упражнений должны быть задания на восстановление опорных заданий и умений. Во-вторых, постоянно проводить работу по поддержанию и совершенствованию ранее сформулированных знаний и умений, в частности, вычислительных навыков. И, в-третьих, способствовать развитию учащихся, т.е. необходимо на каждом уроке предлагать задачи, требующие сообразительности, внимания, анализа и обобщения имеющихся знаний и т.п.
В 5–6 классах для развития и совершенствования вычислительных навыков часто используются так называемые цепочные вычисления.
В учебнике Н.Я. Виленкина и др. такие цепочки даются в виде схем и в виде столбиков. Роль этих упражнений не сводится только к поддержанию умения считать. Важно, что они хороши для развития оперативной памяти, тренировки внимания, настойчивости. Вообще, в учебниках 5–6 классов Н.Я. Виленкина и др. такие примеры достаточно разнообразны для применения их в устном счете.
При проведении устного счета сталкиваешься с такой проблемой, как охват всех учащихся. При наполняемости классов в 25 человек сделать это довольно проблематично. Как правило, классы по силам неоднородны, сильные ученики выполняют все упражнения довольно быстро, что приводит к тому, что постоянно отвечают одни и те же, или им становится скучно. Другие же ученики имеют возможность вообще не выполнять устные упражнения, либо выполнять их от случая к случаю. Смысл же заданий устного счета в том, чтобы каждый ученик выполнил весь объем вычислений, а учитель имел возможность быстро и легко проверять работу учащихся.
Поэтому при планировании устной работы в начале урока можно поступить следующим образом: на доске выписываем пример из методического пособия «Упражнения для быстрого счета» на интересующие разделы и темы, предназначенные для устного счета или текстом, иногда по вариантам, иногда одинаковые. Учащимся дается определенное количество времени, в зависимости от количества заданий. Все вычисления и рассуждения учащиеся производят устно, записывая только конечные результаты, причем именно в той последовательности, в какой были предложены задания (это нужно для облегчения проверки). Через отведенное время собираем по 4–5 тетрадей с каждого варианта. Потом вызываем ученика на каждое задание, который называет только ответы, при необходимости или затруднении обсуждаем или комментируем. Одновременно проверяем сданные тетради, с выставлением отметок.
Так как ученики заранее не знают, чьи тетради берем на проверку, это активизирует их действия, заставляет работать каждого. Такую работу можно проводить во всех классах.
Кроме того, можно использовать следующую форму работы, которая применима в тех ситуациях, когда требуется «набить руку» по темам:
1) упрощение выражений;
2) формулы сокращенного умножения;
3) решение простейших тригонометрических уравнений и неравенств, и др.
Берем одинарный лист в клетку и складываем его по длине пополам. Получаем 4 страницы. В течение 4-х уроков, каждый ученик получает один из четырех вариантов (каждый раз новый) одной и той же работы. Задание выполняется устно, записываются только ответы. Новый вариант работы выполняется на новой странице. Обычно берется 10 заданий в каждом варианте, которые охватывают все возможные случаи для данной темы. Учащимся дается ограниченное количество времени. После каждого урока работы проверяются и оцениваются. На следующем уроке выдаются эти же листочки и другой вариант работы. В журнал выставляется итоговая отметка по результатам всех четырех работ. Такой вид работы позволяет к четвертому уроку существенно увеличить процент качества выполнения работ.
Навыки устных вычислений формируются в процессе выполнения учащимися разнообразных упражнений. Рассмотрим основные их виды [1].
1) Нахождение значений математических выражений.
Предлагается в той или иной форме математическое выражение, требуется найти его значение. Эти упражнения имеют много вариантов. Можно предлагать числовые математические выражения и буквенные (выражение с переменной), при этом буквам придают числовые значения и находят числовое значение полученного выражения, например:
· найдите разность чисел 100 и 9;
· найдите значение выражения
, если С = 100, К = 9.Выражения могут предлагаться в разной словесной форме:
· из 100 вычесть 9; 100 минус 9;
· уменьшаемое 100, вычитаемое 9, найдите разность;
· найти разность чисел 100 и 9;