Смекни!
smekni.com

Підвищення ефективності формування понять з геометричної оптики засобами сучасних інформаційних технологій навчання (стр. 7 из 12)

З вище наведеного випливає, що навчальний фізичний експеримент є поліфункціональною системою, а тому за умови його широкого і систематичного використання у навчанні фізики можна у комплексі вирішувати різноманітні навчально-виховні задачі.

1.4 Аналіз існуючих програмно-педагогічних засобів з теми дослідження

Національною доктриною розвитку освіти в Україні у XXI столітті визначено, що пріоритетом розвитку освіти є впровадження сучасних інформаційних технологій, що забезпечують подальше вдосконалення навчально-виховного процесу, доступність та ефективність освіти, підготовку молодого покоління до життєдіяльності в сучасному комп’ютеризованому суспільстві [41].

Упровадження сучасних інформаційних технологій навчання розкриває широкі можливості щодо суттєвого зменшення навчального навантаження і, водночас, інтенсифікації навчального процесу, надання навчально-пізнавальній діяльності творчого, дослідницького спрямування.

Хоча на сьогоднішній день створено значну кількість навчальних програм, але вони мають певні недоліки. Це стосується і програм з курсу фізики.

Ми проаналізували деякі існуючі програми з фізики. Більшість програм російського видавництва («Открытая физика», «Физикус», «Репетитор по физике»), отже, зорієнтовані на російські стандарти фізичної освіти, зрозуміло, що і текстовий матеріал подається російською мовою. В багатьох програмах спостерігаються помилки, невірно подаються означення понять, помилки в позначеннях фізичних величин на графіках і малюнках, синтаксичні і граматичні помилки. Наявні комп’ютерні програми і програмно-методичні комплекси не забезпечують на належному рівні навчально-виховний процес з фізики. Тому проблема розробки комп’ютерних програм навчального призначення залишається відкритою.

Серед програм вітчизняного виробництва слід відзначити програмно-методичні комплекси «Фізика-7» «Фізика-8» «Фізика-9», створені групою спеціалістів Інституту педагогіки АПН України й корпорацією «Квазар Мікро» [2, 3].

Більш детальніше проаналізуємо деякі із вище згаданих програмних комплексів щодо того, як в них подається матеріал з теми нашого дослідження.

«Физикус» – це російськомовна навчальна програма, розроблена фірмою «Медиахауз». Складається вона із двох дисків і розроблена у вигляді гри, під час якої користувач заходить у будиночок, де повинен набути певних знань. У цій програмі приділена увага п’яти основним розділам фізики: оптиці, механіці, акустиці, електриці, термодинаміці. По кожному із них створена певна кількість керованих динамічних моделей дослідів, експериментів та будови і принципу дії деяких приладів. Позитивною стороною даної програми є її простота у використанні, доступність для розуміння, хороша графіка та динамічність моделей. Але вона має і певні недоліки. В першу чергу це те, що вона охоплює далеко не весь матеріал шкільної програми, а лише деякі його окремі аспекти.

Що стосується геометричної оптики, то тут розглянуто лише наступні моменти: тінь, сонячне та місячне затемнення, відбивання та поглинання променів світла, плоске дзеркало, заломлення, повне відбивання, збиральна та розсіювальна лінза, будова ока та дефекти зору, лупа, мікроскоп та телескоп. Звичайно ж для вивчення геометричної оптики цього недостатньо, хоча при вивченні деяких тем ця програма може дуже допомогти.

«1С: Репетитор по физике» Що стосується цього програмного комплексу, то він охоплює значно більший обсяг матеріалу, ніж «Физикус». За своїм основним призначання він є помічником при самостійному вивченні чи повторенні навчального матеріалу (наприклад, при підготовці до вступу у вуз). У ньому, наприклад, є такі корисні та цікаві складові, як словник, біографії вчених, технічний калькулятор тощо. Також важливою особливістю програми є те, що вона автоматично реєструє, скільки часу і по якій темі працював учень, а також кількість правильно та неправильно розв’язаних задач. Також дана програма містить цікаві пізнавальні відеофрагменти та динамічні моделі, які, на нашу думку, значно підвищують рівень засвоєних знань. Однак, ця програма охоплює далеко не весь шкільний курс фізики.

Отже, враховуючи вище згадане, можна зробити висновок, що питання створення програмних навчальних комплексів залишається відкритим та актуальним і на сьогоднішній день.


2. Методичні аспекти поєднання традиційних та інформаційних технологій при вивченні геометричної оптики

2.1 Аналіз методичної системи вивчення геометричної оптики в загальноосвітній школі

Серед основних властивостей світла найбільш наочною, підтвердженою широким життєвим досвідом є властивість прямолінійно поширюватися в однорідному ізотропному середовищі. Лінія, вздовж якої поширюється енергія світла, називається світловим променем. Отже, промінь – суто геометричний образ. Саме тому, що промінь відображає тільки одну властивість світла, це поняття можна використовувати лише в певних межах. Здавалося б, що промінь можна утворити на досліді, якщо на шляху світла поставити діафрагму з невеликим отвором. Але насправді це не зовсім так. Якщо отвір діафрагми широкий, на екрані утворюється розмита пляма, за формою подібна до діафрагми. Зменшуючи отвір діафрагми, побачимо, що тіньове зображення отвору переходить у чітке зображення джерела світла. Чіткість зображення зростає із зменшенням отвору. Проте це відбувається лише до певної межі, після чого дальше зменшення отвору діафрагми призводить до розмивання зображення. Нарешті, коли отвір дуже малий, весь екран буде повністю освітлений.

Пучок світла від джерела, що обмежується отвором діафрагми, можна вважати наближеною моделлю променя. Зменшуючи розмір отвору діафрагми, утворюємо все вужчий пучок. Проте ми не матимемо змоги створити нескінченно вузький світловий пучок – промінь. Справді, дослід показує, що дальше зменшення розміру діафрагми не тільки не приводить до зменшення перерізу пучка, а, навпаки, веде до його розширення. Тут уже проявляються хвильові властивості світла. Тому обмежимося виділенням вузьких світлових пучків і замінимо їх потім осьовими лініями, які й називатимемо променями світла.

Поняття про промінь світла дає змогу вивчити й осмислити цілий ряд оптичних явищ і законів, пояснити будову і призначення багатьох оптичних приладів. Розділ оптики, що ґрунтується на понятті про промінь, називається променевою або геометричною оптикою. Основне завдання променевої оптики – вивчення будови та дії оптичних приладів.

Оптичні прилади призначені для створення зображення предмета. Кожний світний предмет або, що те саме, джерело світла, можна уявити собі як сукупність окремих світних точок. Зрозуміло, що зображення в цілому складається із зображень окремих точок. Тому спочатку розглянемо, як утворюється зображення окремої світної точки.


а) б) в)

Мал. 1

Із світної точки S, як із спільного центра промені розходяться в усіх напрямах (мал. 1, а). Такий пучок променів називають розбіжним гомоцентричним пучком (тобто розбіжним пучком, що має спільний центр). Якщо примусити хоча б частину променів розбіжного гомоцентричного пучка знову перетнутися в одній точці S′ (мал. 1, б), то вона й буде зображенням світної точки S.

Отже, щоб утворити зображення світної точки, треба перетворити розбіжний гомоцентричний пучок променів у збіжний,

Звідси випливає важливий висновок, який має значення для подальшого вивчення променевої оптики: незважаючи на те, що основним поняттям променевої оптики є поняття про промінь, у променевій оптиці цікавляться поведінкою не стільки одного променя, скільки сукупності променів Із спільним центром розбігу або збігу – гомоцентричними пучками променів світла. Отже, променева оптика є оптикою гомоцентричних пучків світла.

Логічно виникає питання, а яким чином, за допомогою чого можна розбіжні гомоцентричні пучки світла перетворювати в збіжні? Досвід підказує, що це можна зробити або за допомогою відбивання їх, або за допомогою заломлення на межі поділу двох середовищ. У такому разі необхідно вивчити закони відбивання і заломлення гомоцентричних пучків світла. Ці закони зручно вивчати на найпростішому гомоцентричному пучкові – пучку паралельних променів світла. Він має центр збігу у нескінченності (мал. 1, в). Досить простежити лише за одним променем світла у такому пучку, вивчити закономірності, яким він підлягає, оскільки всі промені пучка мають однакові властивості.

Вивчаючи закони відбивання, розглядають ідеальну дзеркальну плоску поверхню, яка повністю відбиває світло без поглинання. Певним наближенням до неї е плоске шліфоване та поліроване металеве дзеркало. (Бажано нагадати учням, що в цьому разі нерівності на плоскій поверхні будуть менші за розміри довжини хвилі).