Смекни!
smekni.com

Підвищення ефективності формування понять з геометричної оптики засобами сучасних інформаційних технологій навчання (стр. 10 из 12)

Розглянемо детальніше структурну будову програми. У головному меню весь матеріал розбито на 6 частин: промені, призми, дзеркала, лінзи, досліди та прилади, кожна із яких, у свою чергу, поділяється ще.

Схематично стриктуру програми можна зобразити наступним чином.

Геометрична оптика:

Промені:

основні поняття про промінь

граничний кут повного відбивання

застосування повного відбивання світла

Призми

хід променів у призмі

хід променів у двоїстій призмі

хід променів у системі призм

Дзеркала

дифузне та дзеркальне відбивання

основні лінії та точки сферичного дзеркала

променів увігнутому сферичному дзеркалі, хід яких відомий

променів опуклому сферичному дзеркалі, хід яких відомий

зображення світної точки в увігнутому сферичному дзеркалі

зображення світної точки в опуклих сферичних дзеркалах

побудова зображень в опуклих сферичних дзеркалах

побудова зображень в увігнутих сферичних дзеркалах

зміна зображення в плоскому дзеркалі

Лінзи

двоопукла лінза

двоввігнута лінза

різноманітність лінз

основні точки та лінії двоопуклої лінзи

основні точки та лінії двоввігнутої лінзи

промені в двоопуклій лінзі, хід яких відомий

промені в двоввігнутій лінзі, хід яких відомий

зображення світної точки в двоввігнутих лінзах

зображення світної точки в двоопуклих лінзах

побудова зображень у двоввігнутих (розсіювальних) лінзах

побудова зображень в двоопуклих (збиральних) лінзах

Прилади

лупа

фотоапарат

будова ока

перископ

бінокль

телескопи

мікроскоп

діаскоп

кінопроектор

Досліди

утворення тіні та напівтіні

заломлення в оптичному дискові

принцип Гюйгенса (для заломлення світла)

принцип Гюйгенса (для відбивання світла)

Переваги розробленої програми:

• простота у використанні;

• забезпечення свідомості й активності дій користувача при роботі з програмою;

• відповідність тематики програми навчальним програмам шкільного курсу фізики.

• динамічність моделей експериментів та приладів.

На основі вище зазначеного можна зробити висновок, що розроблена нами навчальна програма є досить таки детальною, об’ємною і послідовною з методичної точки зору, а, отже, може бути корисною в навчальному процесі.


2.3 Організація і проведення педагогічного експерименту

Для визначення ефективності навчання шляхом моделювання фізичних явищ нами був проведений експеримент в 8А і 8Б Вінницької ЗОШ №26 спільно зі вчителем фізики Булигою Світланою Іванівною.

Експеримент характеризують наступні ознаки:

1. Експеримент проводився з одного предмету – фізики.

2. Експериментальний об’єкт, в якому розкриваються переваги запропонованого методу, був обраний для вивчення нового матеріалу.

3. Експеримент проводився в 8А і 8Б класах.

Ці класи обрані з таких причин:

– учні достатньо володіють фізикою;

– обидва класи знаходяться на одному рівні по знаннях та всебічному розвитку;

– в обох класах викладає фізику один і той же вчитель;

4. Результати експерименту порівнювались з результатами звичайної роботи, яка проводилась тим самим вчителем в контрольному класі (8Б).

5. Ми проводили експеримент на протязі часу, який був запланований на вивчення розділу «Геометрична оптика».

В експериментальному навчанні нами була висунута така гіпотеза: навчання за допомогою комп’ютера дозволяє покращити рівень вмінь, знань навичок, а також сприяє формуванню логічного мислення.

Для визначення рівня успішності з фізики перед початком експерименту в 8А, 8Б і 8В були проведені перевірочні роботи та тести. За результатами тестування, письмової роботи та бесіди з учителем ми зробили висновок про те, що 8А і 8Б класи знаходяться на однаковому рівні засвоєння знань, вмінь та навичок з фізики. Тоді на основі цього для експерименту був обраний клас 8А, а клас 8Б виступив у ролі контрольного класу.

Учні експериментального класу вивчали розділ «Геометрична оптика» за допомогою комп’ютерного моделювання, а учні експериментального – за традиційною схемою.

Після вивчення розділу показники успішності контрольної групи залишились практично незмінними, а ось результати експериментального класу значно покращились.

Навчання з використанням навчальних комп’ютерних програм, як показав експеримент, викликало в учнів інтерес, стимулюючи працювати всіх, навіть слабо підготовлених. Якість знань при цьому відчутно зросла: поняття засвоюються краще, учні чітко визначають суттєві ознаки явищ.

Результати експерименту повністю підтвердили всі гіпотези та положення, що були висунуті перед його проведенням. Використання комп’ютерного моделювання інтенсифікує вивчення теоретичного матеріалу, за рахунок чого залишається певний вільний час, який можна використати для набуття ряду практичних умінь та навичок. А головне, що якість знань і успішність при цьому відчутно зростають.

2.4 Вимоги техніки безпеки щодо роботи з персональним комп’ютером

Розміщення робочих місць з ЕОМ у підвальних приміщеннях, на цокольних поверхах заборонено.

Площа на одне робоче місце має становити не менше ніж 6,0 м2.

Приміщення для роботи з комп’ютерами повинні мати природне та штучне освітлення у відповідності до СНіП 11–4–79.

Природне освітлення має здійснюватись через світлові прорізи, орієнтовані переважно на північ чи північний схід і забезпечувати коефіцієнт природної освітленості (КПО) не нижче ніж 1.5%.

Виробничі приміщення для роботи з комп’ютерами (операторські, диспетчерські) не повинні межувати з приміщеннями, в яких рівні шуму і вібрації перевищують допустимі значення (виробничі цехи майстерні тощо) за СН 3223–85, СН 3044–84, ГР 2-І 11–81, ГОСТ 12.1.003–83.

Звукоізоляція огороджувальних конструкцій приміщень має забезпечувати параметри шуму,що відповідають вимогам СН 3223–85, ГОСТ 12 І 003–83, ГОСТ 12 І 012–90.

Приміщення для роботи з комп’ютерами мають бути обладнані системами опалення, кондиціонування повітря, або припливно-витяжною вентиляцією відповідно до СНіП 2.04.05–9: Нормовані параметри мікроклімату, іонного складу повітря, вмісту шкідливих речовин мають відповідати вимогам СН 4088–86, СН 2152–80, ГОСТ 12. 1. 005–88.

Віконні прорізи приміщень для роботи з комп’ютерами мають бути обладнані регульованими пристроями (жалюзі, зовнішні козирки)

Для внутрішнього оздоблення приміщень з комп’ютерами слід використовувати дифузно-відбивні матеріали з коефіцієнтами відбиття для стелі 0,7–0,8, для стін 0.5–0,6.

Покриття підлоги повинне бути матовим з коефіцієнтом відбиття 0,3–0,5. Поверхня підлоги має бути рівною, неслизькою, з антистатичними властивостями

Забороняється для оздоблення інтер’єру приміщень застосовувати полімерні матеріали, що виділяють у повітря шкідливі хімічні речовини. (дерев'яно-стружкові плити, шпалери, що миються, рулонні синтетичні матеріали, шаруватий паперовий пластик тощо)

Полімерні матеріали для внутрішнього оздоблення приміщень можуть бути використані при наявності дозволу органів та установ державної санітарно-епідеміологічної служби.

Виробничі приміщення можуть обладнуватись шафами для зберігання документів, магнітних дисків, полицями, стелажами, тумбами тощо з урахуванням вимог до площі приміщень.

У приміщеннях слід щоденно робити вологе прибирання

Приміщення мають бути оснащені аптечками першої медичної допомоги.

Мікроклімат.

У виробничих приміщеннях на робочих місцях мають забезпечуватись оптимальні значення параметрів мікроклімату: температури, відносної вологості й рухливості повітря (ГОСТ 12.1. 005–88, СН 4088–86).

Рівні позитивних і негативних іонів у повітрі мають відповідати санітарно-гігієнічним нормам

Освітлення

Вимоги до природного освітлення викладено вище. Штучне освітлення в приміщеннях з робочими місцями, обладнаними ЕОМ, має здійснюватись системою загального рівномірного освітлення. У виробничих та адміністративно-громадських приміщеннях, у разі переважної роботи з документами, допускається застосування системи комбінованого освітлення (крім системи загального, освітлення додатково встановлюються світильники місцевого освітлення).

Значення освітленості на поверхні робочого столу в зоні розміщення документів має становити 300 – 500 лк. Якщо ці значення освітленості неможливо забезпечити системою загального освітлення, допускається використовувати місцеве освітлення. При цьому світильники місцевого освітлення слід встановлювати таким чином, щоб не створювати відблисків на поверхні екрана, а освітленість екрана має не перевищувати 300 лк.

Як джерела світла в разі штучного освітлення мають застосовуватись переважно люмінесцентні лампи. Допускається застосування ламп розжарювання у світильниках місцевого освітлення.

Світильники місцевого освітлення повинні мати просвічуючий відбивач із захисним кутом, не меншим ніж 40°

Слід передбачити обмеження прямої блискості від джерел природного та штучного освітлення.

Необхідно обмежувати відбиту блискість на робочих поверхнях відносно джерел природного і штучного освітлення. При цьому яскравість бліків на екрані має не перевищувати 40 кд/м2, а яскравість стелі в разі застосування системи відбитого освітлення 200 кд/м2.

Показник освітленості у разі використання джерел загального штучного освітлення у виробничих приміщеннях має не перевищувати 20, а показних дискомфорту в адміністративно-громадських приміщеннях має бути не більше за 40.

Необхідно обмежувати нерівномірність розподілу яскравості в полі зору працюючих. При цьому співвідношення яскравостей робочих поверхонь має бути не більшим ніж 3:1, а співвідношення яскравостей робочих поверхонь та поверхонь стін обладнання тощо – 5:1.