В заключение необходимо сказать о том, что решение задач различными способами – дело непростое, требующее глубоких математических знаний и умения отыскивать наиболее рациональные решения, что определенно влияет на общий уровень развития младшего школьника.
1.3 Общие вопросы методики обучения решению задач
Научить детей решать задачи – значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбрать, а затем и выполнить арифметические действия.
В начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач называются задачами одного вида [18, с.173].
Работа над задачами не должна сводится к натаскиванию учащихся на решение задач сначала одного вида, а затем другого и т.д. Главная ее цель – научить детей осознано устанавливать определенные связи между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени:
- Подготовительную работу к решению задач;
- Ознакомление с решением задач;
- Закрепление умения решать задачи [8, с.112].
Остановимся подробнее на каждой ступени.
а) Подготовительная работа к решению задач.
На этой ступени обучения решению задач того или другого вида должна быть создана у учащихся готовность к выбору арифметических действий при решении соответствующих задач: они должны усвоить знание тех связей, на основе которых выбираются арифметические действия, знание объектов и жизненных ситуаций, о которых говорится в задачах.
До решения простых задач ученики усваивают знание следующих связей [15, с.72]:
Связи операций над множествами с арифметическими действиями, то есть конкретный смысл арифметических действий. Например, операция объединения непересекающихся множеств связана с действием сложения; если имеем 4 и 2 флажка, то чтобы узнать, сколько всего флажков, надо к 4 прибавить 2.
Связи отношений «больше» и «меньше» (на сколько единиц и в несколько раз) с арифметическими действиями, то есть конкретный смысл выражений «больше на…», «больше в … раз», «меньше на…», «меньше в … раз». Например, больше на 2, это столько же и еще 2, значит, чтобы получить на 2 больше, чем 5, надо к 5 прибавить 2.
Связи между компонентами и результатами арифметических действий, то есть правила нахождения одного из компонентов арифметических действий по известному результату и другому компоненту. Например, если известна сумма и одно из слагаемых, то другое слагаемое находится действием вычитания. Из суммы вычитают известное слагаемое.
Связи между данными величинами, находящихся в прямо или обратно пропорциональной зависимости, и соответствующими арифметическими действиями. Например, если известна цена и количество, то можно найти стоимость действием умножения.
Кроме того, при ознакомлении с решением первых простых задач, ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи).
Подготовкой к решению составных задач будет умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи [13, с.18].
Необходимо отметить, что при работе над каждым отдельным видом задач требуется своя специальная подготовительная работа.
б) Ознакомление с решением задач.
На этой второй ступени обучения решению задач дети учатся устанавливать связи между данными и искомым и на этой основе выбирать арифметические действия, то есть они учатся переходить от конкретной ситуации, выраженной в задаче к выбору соответствующего арифметического действия [6, с.35]. В результате такой работы учащиеся знакомятся со способом решения задач рассматриваемого вида.
В методике работы на этой ступени выделяются следующие этапы:
1 этап – ознакомление с содержанием задачи;
2 этап – поиск решения задачи;
3 этап – выполнение решения задачи;
4 этап – проверка решения задачи [2, с.317].
Выделенные этапы органически связанны между собой, и работа на каждом этапе ведется на этой ступени преимущественно под руководством учителя.
Заключительным этапом в работе над задачей является работа после решения задачи. В методической литературе опубликовано немало статей (Царева С.В., Шикова Р.Н.), где описаны виды дополнительной работы над уже решенной задачей.
Многие авторы и методисты уделяют много внимания последнему этапу: работе с задачей после ее решения.
в) Закрепление умения решать задачи.
Для проведения работы над задачей после ее решения используют следующие приемы: преобразование задачи; сравнение задач; самостоятельное составление аналогичных задач; обсуждение разных способов решения задачи [2, с.273].
Для правильного обобщения способа решения задач определенного вида большое значение имеет система подбора и расположения задач. Система должна удовлетворять определенным требованиям. Прежде всего задачи должны постепенно усложнятся. Усложнение может идти как путем увеличения числа действий, которыми решается задача, так и путем включения новых связей между данными и искомым.
Одним из важных условий для правильного обобщения младшими школьниками способа решения задач определенного вида является решение достаточного числа их. Однако задачи рассматриваемого вида должны включаться не подряд, а рассредоточено: сначала включаются чаще, а потом все реже и реже, вместе с другими видами. Это необходимо для того, чтобы предупредить запоминание способа решения.
Выработке умения решать задачи нового вида помогают упражнения на сравнение решений задач этого вида и ранее рассмотренных видов, но сходных в каком- то отношении с задачами нового вида и ранее рассмотренных видов, но сходных в каком- то отношении с задачами нового вида. Такие упражнения предупреждают смешение способов решения задач этих видов.
Выработке умения решать задачи рассматриваемого вида помогают так называемые упражнения творческого характера. К ним относятся решение задач повышенной трудности, решение задач несколькими способами, решение задач с недостающими и лишними данными, решение задач, имеющих несколько решений, а так же упражнения в составлении и преобразовании задач.
Решение задач повышенной трудности помогает выработать у детей привычку вдумчиво относиться к содержанию задачи и разносторонне осмысливать связи между данными и искомым. Задачи повышенной трудности следует предлагать в любом классе, имея в виду одно условие: детям должно быть известно решение обычных задач, к которым сводится решение предлагаемой задачи повышенной трудности.
Многие задачи могут быть решены различными способами. Поиск различных способов решения приводит детей к «открытию» новых связей между данными и искомым.
Работа над задачами с недостающими и лишними данными воспитывает у детей привычку лучше отыскивать связи между данными и искомым.
Полезно включать и решение задач, имеющих несколько решений. Решение таких задач будет способствовать формированию понятия переменной.
Упражнения по составлению и преобразованию задач являются чрезвычайно эффективными для обобщения способа их решения.
Проведя теоретический анализ методической литературы по изучаемой нами проблеме, необходимо сделать следующие выводы.
Выступая в роли конкретного материала для формирования знаний, задачи дают возможность связать теорию с практикой, обучение с жизнью. Решение задач формирует у детей практические умения, необходимые каждому человеку в повседневной жизни. Например, подсчитать стоимость покупки, вычислить в какое время надо выйти, чтобы не опоздать на поезд и т.п.
Использование задач в качестве конкретной основы для ознакомления с новыми знаниями и для применения уже имеющихся у детей знаний играет исключительно важную роль в формировании у детей элементов материалистического мировоззрения. Решая задачи, ученик убеждается, что многие математические понятия, имеют корни в реальной жизни, в практике людей.
Задачи выполняют очень важную функцию в начальном курсе математики – они являются полезным средством развития у детей логического мышления, умения проводить анализ и синтез, обобщать, абстрагировать и конкретизировать, раскрывать связи, существующие между рассматриваемыми явлениями.
Решение задач - упражнения, развивающие мышление. Мало того, решение задач способствует воспитанию терпения, настойчивости, воли, способствует пробуждению интереса к самому процессу поиска решения, дает возможность испытать глубокое удовлетворение, связанное с удачным решением.
Таким образом, правильно организованная работа по изучению элементарных понятий, необходимых для решения простых задач, станут в последующем гарантом успешной деятельности по работе над составными задачами.
2. Научные основы методики работы над составной задачей
2.1 Специфика работы над составной задачей
Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению ее на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.
Для построения наиболее эффективного процесса работы над составными задачами можно порекомендовать использовать с учениками определенный алгоритм, составленный в виде памятки (см. Приложение1).