Смекни!
smekni.com

Методические особенности изучения темы "Подобные треугольники" в средней общеобразовательной школе (стр. 1 из 10)

Федеральное агентство по образованию

Барнаульский Государственный Педагогический Университет

Факультет Математики и Информатики

Методические особенности изучения темы «Подобные треугольники» в средней общеобразовательной школе

(Дипломная работа)

Выполнила студентка 11 группы

заочной формы обучения

Научный руководитель

К. ф-м. н., профессор

Поцелуев Николай Александрович

(подпись)

Выпускная работа защищена

«__» ___________________ 2005г.

Оценка _________________

Председатель ГАК

________________________ (подпись)

________________________ (ФИО)

Барнаул 2005


Содержание

Введение

Глава1. Теоретические основы темы «Подобные треугольники»

§1. Преобразование. Преобразование подобия

п.1.1 История возникновения преобразований, преобразования подобия

п.1.2 Понятие преобразования

п.1.3 Группа преобразований множества. Подгруппа группы преобразований

п.1.4 Преобразование подобия плоскости. Гомотетия плоскости

п.1.5 Группа преобразований подобия и её подгруппы

п.1.6 Метод подобия

§1.Сравнительный анализ темы «Подобные треугольники» в различных учебниках по геометрии

§2. Логико-дидактический анализ темы «Подобные треугольники » по учебнику Атанасяна Л.С.

§3. Методические особенности изучения темы «Подобные треугольники»

§4. Подобие треугольников. Признаки подобия треугольников

§5. Опытная работа

Заключение

Список литературы

Введение

Искусство изображать предметы на плоскости с Древних времён привлекает к себе внимание человека, люди рисовали на скалах, стенах, сосудах и прочих предметах быта, различные орнаменты, растения, животных. Люди стремились к тому, чтобы изображение правильно отображало естественную форму предмета.

Учение о подобии фигур на основе теории отношений и пропорций было создано в Древней Греции в 5-4 веках до нашей эры и существует и развивается до сих пор. Например, очень много детских игрушек подобным предметам взрослого мира, обувь и одежда одного фасона выпускается различных размеров. Эти примеры можно продолжать и дальше. В конце концов, все люди подобны друг другу и как утверждает Библия, создал их бог по своему образу и подобию.

Понятие подобия, наряду с понятием движения, является одним из важных понятий геометрии. Оно имеет большое образовательное и практическое значение. Подобие используется при определении расстояний до недоступных предметов, в устройствах различных измерительных инструментов и приборов.

В настоящее время существует большое количество методической литературы по изучению в средней школе, как геометрии, так и подобных треугольников в частности. В основном они построены на известных опробованных учебниках, так как во всех учебных пособиях, по геометрии используемых в школе данная тема имеет место. В связи с этим возникает проблема исследования, которая состоит в том, чтобы разработать методические рекомендации к изучению темы «Подобные треугольники» в курсе средней школы.

Использование понятия подобные треугольники в школе имеет большое методическое значение:

·идея подобия треугольников дает эффективный метод решения большого класса задач на доказательство, построение, вычисление;

·доказательство теорем с привлечением подобия значительно проще доказательств, основанных на признаках равенства треугольников. В большинстве случаев эти доказательства не связаны со вспомогательными построениями, выполнение которых вызывает значительные трудности у учащихся;

·решение элементарных задач на геометрические преобразования служит хорошим материалом для развития пространственного воображения учащихся;

·реализация идеи подобных треугольников, в обучении способствует формированию научного мировоззрения у учащихся;

·подобие треугольников даёт возможность ввести тригонометрические функции острого угла, т. е. новый вид функциональной зависимости, и значительно расширить класс предлагаемых учащимся задач.

Часто меняющиеся программы привели к тому, что эта тема мало изучена в методическом плане. Именно поэтому изучению этой темы уделяется мало внимания в школе. Вследствие чего, методика изучения подобных треугольников требует постоянного совершенствования. Другая причина того, что тема «тяжелая» для учеников заключается в следующем: трудно переучивать использовать метод подобных треугольников при решении задач, поскольку до этого в течении нескольких лет основным средством решения задач являлись признаки равенства треугольников, а не признаки подобия треугольников.

Темы, связанные с подобием в школьных учебниках излагаются по-разному. Поэтому, осознание этого отличия, подбор методов и средств является очень актуальной проблемой методики преподавания темы «Подобные треугольники» в школьном курсе геометрии. Эта тема заслуживает внимания и детального изучения.

Цельисследования заключается в выявлении методических особенностей изучения темы «Подобные треугольники» в средней общеобразовательной школе.

Объектом исследования является процесс обучения учащихся геометрии.

Предметом исследования методические особенности изучения темы «Подобные треугольники» в средней общеобразовательной школе.

Гипотеза исследования: если в процессе изучения темы «Подобные треугольники» использовать специально разработанную методику, направленную на решение задач устного характера, которая будет способствовать развитию учащихся за счет повышения уровня логического мышления, памяти, речи и внимания, то можно выявить методических особенностей изучения темы «Подобные треугольники».

Задачи исследования:

1. Выполнить теоретический анализ математической, учебной и методической литературы по вопросам выявления методических особенностей изучения темы «Подобные треугольники».

2. Разработать доступную методику изучения темы «Подобные треугольники».

3. Организовать и провести уроки по разработанной методики.

4. Выяснить влияние проводимых уроков на качество знаний учащихся.

5. Определить методические особенности изучения темы «Подобные треугольники».

Для решения поставленных задач были использованы следующие методы:

·изучение, анализ, сравнение математической, учебной и методической литературы по проблеме опытной работы;

·наблюдение за деятельностью учащихся и учителей;

·организация и проведение уроков по теме;

·количественная и качественная обработка данных, полученных при проведении опытной работы.

Структуру и содержание данной работы составляют: введение, две главы, заключение, библиографический список литературы.

В заключении подведены итоги проделанной работы и сформулированы выводы.

В библиографическом списке представлены 52 источника.

Глава1. Теоретические основы темы «Подобные треугольники»

§1. Преобразование. Преобразование подобия

1.1 История возникновения преобразований, преобразования подобия

Искусство изображать предметы на плоскости с древних времен привлекало к себе внимание человека. Попытки таких изображений появились значительно раньше, чем возникла письменность. Ещё в глубокой древности люди рисовали на скалах, стенах, сосудах и прочих предметах быта различные орнаменты, растения, животных. Длинная практика подсказала людям, каким правилам надо следовать, чтобы правильно выразить на плоскости желаемый предмет. Так возникли зачатки учения о соответствии и преобразовании. Инженер и архитектор Дезарг в1630 г. впервые разработал основы математической теории перспективы. Своими трудами он положил начало изучению перспективных преобразований, под которыми в последствии стали понимать отображение фигуры, данной в одной плоскости, на другую плоскость посредствам центрального проектирования или ряда последовательных проектирований.

Растущие потребности технического прогресса требовали научной разработки теории преобразований, обеспечивающей точность отображения объектов на плоскость с соблюдением размеров. Возникшая проблема решалась усилиями многих талантливых людей. Большой вклад в дело исследования взаимнооднозначного соответствия на плоскости и в пространстве сделал немецкий геометр Мёбиус (1746-1818). Позже Ф. Клейн (1849-1927) положил различные группы преобразований в основу классификаций различных геометрий: аффинной (группа аффинных преобразований), проективной (группа проективных преобразований) и т. д. Частным случаем аффинного преобразования является преобразование подобия, в котором растяжение или сжатие происходит равномерно, т. е. одинаково вдоль каждой координатной оси.

Одинаковые по форме, но различные по величине фигуры встречаются в вавилонских и египетских памятниках. Учение о подобие фигур на основе теории отношении и пропорции было создано в Древней Греции в 5-6 в. в. до н.э. трудами Гиппократа Хеосского, Архита Тарентского, Евдокса Книдского и др.

Символ обозначающий подобие фигур, есть не что иное, как повёрнутая латинская буква S-первая буква в слове similes, что в переводе означает подобие. Свойства подобия, установленные из опыта, издавна широко использовались при составлении планов, карт, при выполнение архитектурных чертежей различных деталей машин и механизмов.

1.2 Понятие преобразования

Изложение теории геометрических преобразований начнём с общих определений.

Определение. Отображением f множества X в множество Y называется такое соответствие, при котором каждому элементу x множества X соответствует вполне определённый элемент y множества Y.