Смекни!
smekni.com

Методика обучения решению текстовых задач алгебраическим методом (стр. 4 из 5)

Предлагаемый урок (см. приложение 2) – исследование алгебраического способа решения задач в 3 класс, составление алгоритма этого способа. Дети должны на уроке для себя открыть этот способ и составить его алгоритм Формы работы: коллективные, парные, групповые и индивидуальные. Урок проводится в компьютерном классе с использованием программы «Семейный наставник». Дети с самого начала урока разделены на группы по привязанности друг к другу. На партах находятся необходимые учебные принадлежности, фломастеры и четвертая часть листа ватмана для записи алгоритма алгебраического способа решения, памятка с арифметическим способом решения задачи.

Выработанная педагогами гимназии система работы с задачей, проведение уроков с компьютерной поддержкой дают положительные результаты: стабильно высокое качество знаний по математике в 96%, «5» у 40% учащихся, минимум ошибок при решении задач, первые и призовые места в гимназических, городских олимпиадах.


Заключение

Таким образом, решение текстовых задач не случайно всегда волновало учителей, методистов, да и самих учащихся и их родителей.

Во-первых, нельзя решить задачу, не поняв ее содержание. Следовательно, умение решать текстовые задачи свидетельствует об одной из самых важных способностей человека - способности понимать текст. Правы те учителя, которые добиваются понимания текста не только на уроках чтения, но и на уроках математики. Критерием понимания задачи является факт решения задачи. Поэтому решение текстовых задач - это деятельность, весьма важная для общего развития. Обучая решать текстовые задачи, мы приучаем ориентироваться в ситуациях, делаем человека более компетентным. Конечно, для этого нужно резко расширить тематику задач, давать детям задачи, разнообразные по тематике, а не только «на скорость», «на работу», «на покупки».

Во-вторых, решение задачи алгебраическим методом - чуть ли не единственный путь для объяснения ученикам того, чем вообще занимается математика, - объяснения метода математического моделирования. Собственная деятельность школьника в этой области протекает именно и только при решении текстовых задач алгебраическим методом. Ученик читает условия, характеризующие некоторую бытовую ситуацию, переводит эту ситуацию на математический язык (составляет уравнения) и затем решает уравнения, уже не думая о данной бытовой ситуации. Он работает с математической моделью. Наконец, он получает результат на языке этой модели и переводит его на естественный язык (осмысление и запись ответа) - получает решение бытовой задачи.

Решение текстовых задач способствует, с одной стороны, закреплению на практике приобретённых умений и навыков, с другой стороны, развитию логического мышления учащихся[10].

Наблюдается активизация их мыслительной деятельности. При правильной организации работы у учащихся развивается активность, наблюдательность, находчивость, сообразительность, смекалка, развивается абстрактное мышление, умение применять теорию к решению конкретных задач.


Список литературы

1. Виноградова Л.П. Обучение решению задач // Фестиваль педагогических идей «Открытый урок». – М.: Первое сентября, 2004. – 540 с.

2. Епишева О.Б. Общая методика преподавания математики в средней школе: Курс лекций. - Тобольск: Изд. ТГПИ им. Д.И.Менделеева, 1997. – 338 с.

3. Паламарчук В.Ф. Школа учит мыслить. - М.: Просвещение, 1987. – 264 с.

4. Фридман Л.М., Турецкий Е.Н. Как научиться решать задачи. - М.: Просвещение, 1984. – 250 с.

5. Хеннер Е.К., Шестаков А.П. Математическое моделирование. Пособие для учителя. – Пермь, 1995. – 158 с.

6. Лебедев В. Анализ и решение текстовых задач // Математика в школе. – 2002. - №11. - С. 8.

7. Левитас Г.Г. Об алгебраическом решении текстовых задач // Математика в школе. – 2000. - №8. - С. 13.

8. Мордкович А.Г. Алгебра. Учебник для 7 класса общеобразовательной школы. - М.: Мнемозина, 1997. – 284 с.

9. Петухова Л.И. О решении текстовых задач по математике // Фестиваль педагогических идей «Открытый урок». – М.: Первое сентября, 2004. – 540 с.

10. Фоминых Ю. Одну задачу несколькими методами // Математика в школе. – 2004. - №20. - С. 17.

11. Чаплыгин В.Ф. Некоторые методические соображения по решению текстовых задач // Математика в школе. – 2000. - №4. - С.28.


Приложение 1.

Пример решения задачи

Задача. Расстояние между двумя городами скорый поезд проходит на 4 часа быстрее товарного и на 1 час быстрее пассажирского. Найти скорости товарного и скорого поездов, если известно, что скорость товарного поезда составляет 5/8 от скорости пассажирского и на 50 км/ч меньше скорости скорого.

Решение (черновик).

Отвечаем на вопросы, поэтапно составляя таблицу.

1. Речь идёт о процессе движения, которое характеризуется тремя величинами: расстояние, скорость, время (3 столбца таблицы).

2. В задаче 3 процесса: движение скорого, пассажирского и товарного поездов (3 строчки таблицы).

Можно составить «скелет» таблицы.

ВеличиныПроцессы Расстояние (км) Скорость (км/ч) Время (ч)
Скорый поезд
Пассажирский поезд
Товарный поезд

3. Заполняем таблицу в соответствии с условиями задачи

4. Вводим неизвестные величины: x, км/ч – скорость товарного поезда, y, ч – время движения скорого поезда.

5. Составим «модель».

(x+50)y = 8/5 x(y+1)

8/5 x(y+1) = x(y+4)


6. Решаем эту систему. Из первого уравнения находим у. Из второго уравнения находим х.

Решение задачи (чистовик).

Пусть х, км/ч – скорость товарного поезда (х>0), у, ч – время движения скорого поезда (у>0).

Составляем таблицу.

ВеличиныПроцессы Расстояние (км) Скорость (км/ч) Время (ч)
Скорый поезд (х+50)у х+50 ? у
Пассажирский поезд 8/5 х(у+1) 8/5 х у+1
Товарный поезд х(у+4) х ? у+4

По условию задачи поезда прошли одно и то же расстояние. Получаем систему уравнений

8/5 х(у+1) = х(у+4)

(х+50)у = х(у+4).

По условию задачи х>0, тогда

8(у+1) = 5(у+4)

(х+50)у = х(у+4),

3у = 12

(х+50)у = х(у+4),

у = 4

х+50 = 2х,

у = 4

х = 50.


Полученные значения неизвестных удовлетворяют условию х>0, у>0, значит удовлетворяют условию задачи.

50 км/ч – скорость товарного поезда.

50+50 = 100 (км/ч) – скорость скорого поезда.

Проверка по условию задачи.

50 км/ч – скорость товарного поезда,

4+4 = 8 (ч) – время движения товарного поезда.

50*8 = 400 (км) – расстояние, которое прошёл товарный поезд.

50*8/5 = 80 (км/ч) – скорость пассажирского поезда.

4+1 = 5 (ч) – время движения пассажирского поезда.

80*5 = 400 (км) – расстояние, которое прошёл пассажирский поезд.

4 ч – время движения скорого поезда.

50+50 = 100 (км/ч) – скорость скорого поезда.

100*4 = 400 (км) – расстояние, которое прошёл скорый поезд.

Каждый поезд прошёл одно и то же расстояние.

Задача решена верно.

Ответ: 50 км/ч, 100 км/ч.

Аналогично можно решать задачи «на работу», «наполнение бассейна».


Приложение 2.

Урок «Составление алгоритма алгебраического способа решения задач»

Цель:

1. Исследование алгебраического способа решения задач и составление алгоритма.

2. Формирование действия моделирования.

3. Развитие компонентов УД.

Оборудование:

1. Карточки:

- арифметический способ решения;

- алгебраический способ решения;

- задача.

2. Фломастеры, мелки, чистые листы, магниты, компьютеры.

3. Учебные принадлежности.

Ход урока

Организационный момент:

Чему учимся на уроке математики?

Что уже знаем хорошо?

Чему надо учиться?

Тему урока сформулируем позже.

Откроем тетради, оформим начало работы.

Актуализация:

1. Вспомним некоторые умения, которые помогут в дальнейшем.

Индивидуальная работа - Составить по схеме уравнения и записать их.

Х 5
5 20 72

(3· х+5· 2+20=72)

Все остальные учащиеся выполняют любое из этих заданий:

Запиши уравнения и реши их.

1. Число 40 увеличили на произведение числа 6 и неизвестного и получили 76.

2. Составьте уравнение и решите задачи.

В классе 28 учеников. Сколько мальчиков в классе, если девочек 13?

В трех вазах 27 гвоздик. В первой вазе на 3 гвоздики меньше, чем во второй вазе, и на 6 гвоздик больше, чем в третьей. Сколько гвоздик в третьей вазе?

1.187 * (33467 : 49 – 362)

Что мы должны знать об уравнении?

Для чего нужны уравнения?

2. Построение моделей к уравнениям выполняем неплохо.

Вспомним, как они решаются.

Нам поможет компьютер.

Сели за компьютер. Задания выполняем в уме.

Порядок работы:

а) Прочитай информацию.

б) Подумай, а потом выполняй.

Какие инструменты нам необходимы:

а) экран

б) мышка

в) калькулятор

г) резинка

в конце посмотреть результаты, сравнить с прошлым.

(Даются 11 заданий: сложные уравнения на : и х в пределах 100)

Кто закончил на черновике, составляет уравнения с числами а, 8, 32, 4.

3. Нам необходимо еще вспомнить одно умение.

(арифметический способ решения задач на листочках.)

Задача. В трех одинаковых ящиках 21 кг апельсинов. Сколько апельсинов в 8 таких же ящиках?