Смекни!
smekni.com

Методика изучения объемов многогранников в курсе стереометрии (стр. 3 из 11)

Прежде всего, величины можно измерять, получая при этом именованные числа. Будем считать, что величина, или именованное число, которое ее выражает, – это одно и то же.

Тогда: 1) величина не может принимать отрицательных значений; 2) если тело (или носитель величины) разбито на части, то сумма величин частей равна величине целого. Величины одного рода можно складывать; 3) для двух величин одного рода существует отношение – отвлеченное число, которое не зависит от способа измерения величин [3].

Рассмотрим конкретный пример.

Представим себе два сосуда: один в форме куба, а второй произвольной формы (рис. 1). Пусть оба сосуда доверху наполняются жидкостью. Допустим, выяснилось, что для наполнения первого сосуда понадобилось m кг жидкости, а для наполнения второго сосуда понадобилось n кг жидкости. Естественно считать, что второй сосуд в
раз больше первого. Число, указывающее, во сколько раз второй сосуд больше первого, мы будем называть объемомвторого сосуда.Первый сосуд является единицей измерения. Из этого определения понятия объема получаются следующие его свойства:

· Во-первых, так как для заполнения каждого сосуда требуется определенное количество жидкости, то каждый сосуд имеет определенный (положительный)объем.

· Во-вторых, для заполнения равных сосудов потребуется одно и то же количество жидкости. Поэтому равные сосуды имеют равные объемы.

· В-третьих, если данный сосуд разделить на две части, то количество жидкости, необходимое для заполнения всего сосуда, состоит из количества жидкости, необходимой для заполнения его частей. Поэтому объем всего сосуда равен сумме объемов его частей [24].

По данному определению для того, чтобы узнать объем сосуда, надо заполнить его жидкостью. В жизни, однако, требуется решать обратную задачу. Требуется узнать количество жидкости, необходимой для заполнения сосуда, не производя самого заполнения. Если бы мы знали объем сосуда, то количество жидкости мы бы получили, умножая объем сосуда на количество жидкости, необходимой для заполнения единицы объема.

Тело мы будем называть простым, если его можно разбить на конечное число тетраэдров, то есть треугольных пирамид. В частности, такие тела как призма, пирамида, вообще выпуклый многогранник, являются простыми.

Рассмотрим другое определение объема многогранников.

Число, характеризующее величину внутренней области многогранника, называется объемом многогранника.

Смежными многогранниками называются такие многогранники, которые имеют одну или несколько общих граней, причем остальные точки каждого из многогранников расположены вне другого (рис. 2).

Условимся рассматривать объем многогранника как величину, обладающую следующими свойствами:

1. Два равных многогранника имеют один и тот же объем, независимо от их расположения в пространстве.

2. Объем многогранника, представляющего собой сумму двух смежных многогранников, равен сумме объемов этих многогранников.

3. Если из двух многогранников первый содержится целиком внутри второго, то объем первого многогранника не превосходит объема второго.

Многогранники, имеющие равные объемы, называются равновеликими [37]. За единицу объема принимается объем куба, ребро которого равно единице длины (мм, см, дм, м и т.п.).

Естественно, такие определения понятия объема многогранников даются на строгом математическом языке. Рассмотрим подходы к определению понятия объемов многогранников в школьных учебниках.

Во всех учебниках объем вводится аналогично площади, с той лишь разницей, что в учебнике [7] определения нет, а в учебниках [8] и [6] они имеются: в учебнике [8] – это положительная величина, а в учебнике [6] – неотрицательная.

Существуют два подхода к определению объема:

1 подход. Понятие объема вводится аксиоматически. Объем – это положительная величина, численное значение которой обладает следующими свойствами:

- равные тела имеют равные объемы;

- если тело разбито на части, являющиеся простыми телами, то объем этого тела равен сумме объемов его частей;

- объем куба, ребро которого равно единице длины, равен единице.

Такой подход реализован в учебниках [8] и [6]. Причем, как говорилось выше, перед понятием объема проговаривается аналогия с понятием площади.

2 подход. Понятие вводится конструктивно. Будем считать, что каждое из рассматриваемых нами тел имеет объем, который можно измерить с помощью выбранной единицы измерения объемов. За единицу измерения объемов примем куб, ребро которого равно единице измерения отрезков. Куб с ребром 1 см. называют кубическим сантиметром и обозначают см3.

Такой подход реализован в учебнике [7]. Отличие также состоит в том, что аксиомы, сформулированные в учебнике [8] в определении, в учебнике [7] прописаны отдельной чертой как свойства.

Дальнейшее изучение происходит по-разному.

Во всех учебниках первой формулой вводится объем прямоугольного параллелепипеда, как произведения трех его измерений. Что касается учебного пособия [6], то в нем изложение материала отличается от других учебников. Это связано с тем, что предназначен он для классов с углубленным изучением математики. Материал построен таким образом, что сначала сформированные наглядные представления расширяются, причем отталкиваясь от реальности. Затем, переходя от наглядности, осуществляется точная словесная формулировка. Так, например, доказывается теорема об объеме прямого цилиндра. Призма рассматривается как частный случай - это цилиндр, но с другим основанием. Аналогичным образом вводится объем конуса, а отсюда получаем как следствие объем пирамиды. Представление объема интегралом доказывается в виде теоремы, но не в полном объеме, так как оно сложно и требует расширения понятия интеграла. Применение этот материал нашел при доказательстве формул объемов цилиндра, конуса (пирамиды) и шара. Для некоторых тел вращения дается общая формула объема через интеграл. В виде задач сформулированы метод Кавальери и формула Симпсона, причем предлагается найти им аналоги в планиметрии. Аналогично предлагается вывести самостоятельно формулы для шарового сегмента, шаровых пояса и сектора, определения которых даны в формулировке задач. Имеется также дополнение к главе, где рассматривается вопрос равновеликости и равносоставленности. Практическая часть пособия представлена достаточным количеством задач, при этом их тематика довольно обширная по сравнению с другими учебниками. Отличительной чертой задач является то, что учащиеся должны искать и, решая, проводить самостоятельно аналогию с курсом планиметрии. Это развивает память, мышление, воображение, а также способствует более прочному закреплению материала.

Проанализировав учебные пособия по данной теме при дальнейшем рассмотрении учебников будем опираться только на учебники [7] и [8], так как в них изложение материала и построение курса более понятно для изучения школьниками.

В младших и средних классах (I-V) понятие объема фигуры употребляется по существу как первичное, неопределяемое. У учащихся формируется убежденность в том, что окружающие их физические тела имеют определенный объем, это убеждение по интуиции переносится и на геометрические тела. По отношению к кубу и прямоугольному параллелепипеду в IV классе предлагаются формулы, которые иллюстрируются (для случая целых измерений) с помощью разбиения данной фигуры на единичные кубики. Такое разбиение можно условно считать первым в школьном курсе подходом к определению понятия объема; число единичных кубов, составляющих прямоугольный параллелепипед (в частности куб), принимается за числовое значение объема соответствующей фигуры.

В курсе VIII класса учащиеся знакомятся с общей задачей нахождения объемов многогранников и некоторых других фигур. Практика преподавания выявила некоторые трудности в усвоении этого материала восьмиклассниками, к тому же характер его изложения не вполне увязан с общей практической направленностью пропедевтического курса стереометрии [16].

Таким образом, углубленное изучение определения объема приходится отложить до X класса, где к этому понятию возвращаются и в теме «Многогранники» и в теме «Фигуры вращения».

§ 4 Цели изучения темы «Объемы многогранников»в курсе стереометрии

1.4.1. Развитие пространственных представлений

Широкие возможности для развития пространственных представлений открываются при использовании различных наглядных пособий и ТСО. Можно организовать работу по изготовлению наглядных пособий силами учащихся. Эта работа потребует от них и определенных знаний, и достаточно развитого пространственного воображения. Работа по изготовлению самодельных учебных наглядных пособий проводится под руководством учителя в классе, во внеурочное время, в кружках и школьных производственных мастерских. Помимо положительного влияния на усвоение курса математики, такая работа содействует повышению эффективности урока. Иное дело, когда учитель злоупотребляет демонстрацией наглядных пособий. Этим он избавляет учеников от необходимости напрягать, упражнять воображение и в результате мешает его развитию.