№ урока | Содержание учебного материала |
1-2 | Обобщение понятие многоугольника. Многогранник. |
3-5 | Призма, параллелепипед. Упражнения. |
6-10 | Пирамида. Виды пирамид. Упражнения. |
11-13 | Выпуклые многогранники. |
14-16 | Теорема Эйлера. Развертка выпуклого многогранника. |
17-19 | Правильные многогранники. |
Подводя итоги выше сказанного, можно сказать, что во всех учебниках при изучении многогранников рассматривается практически одни и те же основные темы: определение многогранника, выпуклые многогранники, призма, пирамида, правильные многогранники. Разница лишь в глубине изучения этих вопросов: в гуманитарных классах [28] тема изучается более поверхностно, практически без доказательств, в классах с углубленным изучением математики [3] данный вопрос рассматривается глубоко, с научными обоснованиями. Также есть различия в некоторых дополнительных темах, например, полуправильные и звездчатые многогранники рассматриваются только в [28]. В настоящее время во многих общеобразовательных школах идет обучение по учебнику [4], поэтому при выборе содержания можно опираться на него.
3. Виды и роль наглядных средств при изучении многогранников.
Тема «Многогранники», как никакая другая тема школьного курса стереометрии, за исключением, быть может, изучения круглых тел, дает широкие возможности использования различных наглядных средств.
Наглядность является обязательным качеством любого обучения. Путем целенаправленных действий мы формируем в сознании учащегося некоторую систему понятий, отношений между ними. Для того чтобы обучение было успешным, необходимо, чтобы ученик могвоспринимать эту систему и работать с ней. Но для этого, в свою очередь, необходимо предъявить ученику некоторую ее материальную модель. Для этого применяют наглядные средства обучения. Например, если изучается понятие пирамиды, то такой моделью может быть: 1) словесное описание (определение) этого понятия; 2) объемная модель пирамиды (каркасная или сплошная); 3) ее развертка; 4) изображение пирамиды или ее развертки на доске, на бумаге, на экране и т. п. Все перечисленные объекты являются материальными моделями, с той или иной стороны отражающими понятие пирамиды.
Основными наглядными средствами при изучении многогранников являются объемные модели. Такие модели, сделанные из разных материалов, соответствуют различным дидактическим целям.
Так, например, с помощью картонной модели можно показать форму многогранника. Также на таких моделях удобно показать развертку поверхности тела. Но из-за непрозрачности картона уже нельзя использовать картонные многогранники для демонстрации сечения тел и тел, вписанных друг в друга. Стеклянные модели рекомендуется использовать в тех случаях, когда необходимо показать в многограннике сечение или другое вписанное в него геометрическое тело. Деревянные модели отличаются прочностью. Проволочные каркасные модели также находят широкое применение на уроках стереометрии. Они позволяют показать виды, элементы и проекцию многогранника на плоскость (тень модели на листе белой бумаги), сечение многогранника плоскостью, комбинации геометрических тел. Такая модель является связующим звеном между объемной моделью многогранника и чертежом на бумаге. Можно перечислить серии каркасных моделей, которые могут быть использованы на уроке: набор моделей правильных призм и пирамид (полных и усеченных), набор моделей четырехугольных пирамид, вершины которых проектируются в точку пересечения диагоналей основания (кроме основного контура, модель должна иметь высоту, диагональ основания и высоты боковых граней), набор моделей на комбинации многогранников.
Выпускаемые промышленностью модели не всегда могут удовлетворить потребности, возникающие при обучении школьников математике. Поэтому учителя часто прибегают к изготовлению моделей своими силами с привлечением учащихся. Это делается не только в тех случаях, когда в школе отсутствуют необходимая модель, прибор или инструмент, но и когда учитель считает, что имеющаяся модель, прибор не в полной мере способствуют ясному и четкому восприятию изучаемого материала. Внося в модель усовершенствования, учитель привлекает учащихся к изготовлению нового варианта модели. Это содействует получению учащимися более глубоких и прочных знаний, умений применять теоретический материал на практике. Модели как фабричного, так и самодельного изготовления могут быть использованы при введении новых понятий и доказательстве теорем, при решении задач, при выполнении практических и лабораторных работ.
Другим удобным видом учебного оборудования являются резиновые штемпели (штампы) с изображением различных плоских и объемных фигур, графиков, таблиц и т. д. К сожалению, такое средство обучения сейчас редко встречается в школе. При использовании этого вида учебного оборудования достаточно приложить штемпель к штемпельной подушке и прижать его к листу бумаги, чтобы получить нужное изображение, например изображение куба или прямоугольного параллелепипеда. При решении задач, связанных с построением изображений куба или прямоугольного параллелепипеда, учащиеся, воспользовавшись штемпелем, могут быстро получить в тетради правильный чертеж, что дает большую экономию времени. Естественно, применение штемпелей недолжно привести к утрате учащимися навыков вычерчивания фигур. Поэтому учитель должен вначале научить учащихся изображать фигуры на плоскости, а затем применять штемпели на уроке. Штемпели могут использоваться учителем при подготовке многовариантных контрольных заданий. Можно, например, заготовить 35-40 чертежей с изображением прямоугольного параллелепипеда, чтобы затем, проставив размеры, получить набор индивидуальных заданий.
Также при изучении многогранников можно использовать различные рабочие исправочные таблицы. Рабочие таблицы - это такие таблицы, по материалу которых можно организовать активную мыслительную деятельность учащихся как по усвоению нового теоретического материала, так и по его закреплению. С помощью рабочих таблиц возможно осуществить выполнение большого числа упражнений, способствующих выработке и закреплению у учащихся определенных навыков, можно проводить опрос учащихся или создать проблемную ситуацию перед всем классом. Например, при ведении понятия «пирамида» можно использовать таблицу с изображением пирамиды, ее основных элементов и частных видов. В отличие от рабочих таблиц справочные таблицы, т.е. таблицы для запоминания, предназначены для длительного воздействия на зрительный аппарат учащегося. Такие таблицы могут быть вывешены в кабинете математики на длительное время. Таким образом, основным свойством справочных таблиц является (помимо наглядности, которая в ряде случаев играет важную роль) их дидактическая направленность. Таблицы эти предназначены для принудительного воздействия на память учащегося с целью запоминания основных фактов, формул, графиков и др. Примером таких таблиц может служить таблица «Вычисление площадей и объемов многогранников», в которой изображены различные виды многогранников и указаны формулы вычисления объема и площади поверхности для каждого вида.
Большие возможности воспитания самостоятельности и активности открываются при использовании тетрадей с печатной основой. В настоящий момент они все чаще появляются в школах. Тетради с печатной основой предназначаются для организации самостоятельной работы на этапе закрепления и повторения пройденного материала. Основная отличительная особенность тетради в том, что она позволяет более рационально использовать учебное время, так как ученики освобождаются при работе с тетрадью от механического переписывания текста заданий и основное внимание сосредоточивают на выполнении заданий, включенных в тетрадь. Как правило, такие тетради чаще используются в младших классах. Тетради с печатной основой включают большое число заданий. Цель заданий различна. Задания могут дать ученику образец способа рассуждений, решения, данные в тетради, могут содержать пропуски в тексте, которые ученики должны заполнить при работе с тетрадью (причем пропущены не случайные слова, а такие, которые заставляют ученика лишний раз обратиться к определениям, задуматься над последовательностью операций). Итак, тетрадь с печатной основой дает возможность отрабатывать понятия и прививать учащимся навыки решения типовых задач.
Также нельзя забывать и про такие средства обучения как диапозитивы, кодопозитивы, компьютерные средства, которые могут быть эффективно применены при изучении многогранников и не только их.
Нередко наглядные средства рассматривают лишь как временную опору при начальном усвоении знаний. Сторонники такой оценки роли наглядных средств полагают, что модели в этом случае приучают учащихся к очевидности и поэтому не способствуют развитию логического мышления. Выдвигается даже дидактическое правило: чем старше учащиеся, тем меньше моделей должно применяться в преподавании математики. Принять такую точку зрения и вытекающее из нее дидактическое правило нельзя, так как они несостоятельны. Правильно понимаемое применение наглядных средств не только уместно, но и необходимо на всех ступенях обучения.
Таким образом, готовясь к конкретному уроку, учитель выбирает те средства, с которыми легче организовать необходимую работу учащихся, т. е. наиболее в данный момент простые для их восприятия. Например, если на уроке предполагается начать знакомство с понятием какого-то частного вида многогранника, то наиболее удобными окажутся объемные изображения или изображения на киноэкране. В процессе же закрепления этого понятия достаточно просты для восприятия плоские чертежи или словесные описания.