С каким ускорением будет двигаться вагонетка массой 400 кг, если на нее начнет действовать сила тяги 100 Н, а сила трения равна 20 Н?
Задачу решают аналогично рассмотренной выше, к, предварительно указав на чертеже силы
и , находят их равнодействующую + , равную по модулю их разности и направленную в сторону силы .Какие значения может иметь ускорение тела массой 2 кг, если на него одновременно действуют силы 10 и 15 Н?
Сила натяжения тетивы лука (рис. 15) 30 Н и угол α=120°. Какое ускорение сообщит тетива стреле массой 40 г?
Рис. 15
Для самостоятельной работы учащихся можно использовать дидактические материалы.
Третий закон Ньютона
Изучение третьего закона Ньютона начинают с повторения опытов по взаимодействию тел (см. рис. 5), обращая внимание при этом на то, что каждое из тел действует на другое с некоторой силой.
После этого следует еще раз рассмотреть взаимодействие двух тел при их вращательном движении (см, рис. 9) и записать известное учащимся соотношение
виде .Так как и
и , где и - это силы, приложенные соответственно к первому и второму телам, то =- . Это равенство выражает третий закон Ньютона. Словесная его формулировка в учебной литературе различна.В некоторых учебниках этот закон приводится в той формулировке, которая была дана в «Началах» самим Ньютоном: «Действию всегда есть равное и противоположное противодействие, другими словами, действия двух тел друг на друга всегда равны и направлены в противоположные стороны».
Еще чаще этот закон формулируется как утверждение, что «сила действия равна силе противодействия» или еще более кратко: «действие равно противодействию».
Как показывает педагогическая практика, в этих кратких формулировках третий закон Ньютона хорошо запоминается учащимися, но далеко не всегда глубоко понимается. Поэтому лучше дать более обстоятельную и исчерпывающую формулировку: силы, с которыми действуют друг на друга тела, по абсолютному значению равны и направлены по одной и той же прямой в противоположные стороны.
Силы, о которых идет речь в третьем законе Ньютона, всегда одной природы. Приложены они к различным телам и потому не имеют равнодействующей. На опытах следует показать, что силы всегда возникают парами. Если есть одна сила, то есть и другая, равная ей по модулю, но противоположная по направлению.
Рис. 16
К динамометру (рис. 16) подвешивают тело 2, например цилиндр от ведерка Архимеда, а на столик динамометра 3 ставят сосуд 4 с водой (стрелки обоих динамометров лучше установить на нуле). Опуская цилиндр 2 в сосуд 4, наблюдают одновременное, равное и противоположное изменение показаний обоих динамометров.
На внеклассных занятиях, особенно на вечерах занимательной физики, возможно решение большого числа интересных и поучительных занимательных задач, софизмов и парадоксов. В качестве примера приведем одну из таких задач:
На рычажных весах уравновешен стакан с водой. Нарушится ли равновесие весов, если в воду погрузить карандаш и держать его в руках, не касаясь стенок стакана? Проверить ответ на опыте. (Вода не должна выливаться из стакана.)
Неожиданный для учащихся результат опыта объясняется тем, что не только вода действует с архимедовой силой на карандаш, но и карандаш с равной по модулю, но противоположной по направлению силой действует на воду.
Заключительное занятие по теме «Законы движения Ньютона»
Целью заключительного занятия является систематизация и обобщение знаний учащихся по теме. Может быть рекомендован следующий план проведения этого занятия.
1.Предмет и задачи динамики.
2.Основные понятия динамики.
3.Масса.
4.Сила.
5.Первый закон Ньютона (формулировка закона, его проявления в природе и технике. Использование закона на практике).
6. Второй закон динамики.
7.Третий закон динамики, опыты, подтверждающие его справедливость.
Занятие целесообразно провести в форме семинара. План его сообщается учащимся заранее. Учитель рекомендует учащимся ответы на 3 и 4-й вопросы готовить в соответствии с обобщенным планом о величине, а ответы на 5, 6 и 7-й вопросы — в соответствии с обобщенным планом ответа о законе. Обобщенный план ответа о величине выражает общие требования к усвоению понятия физическая величина:
1. Указать, какое свойство тел (или явление)количественно характеризует данная величина.
2.Дать определение величины.
3. Указать, какая это величина: основная или производная.
4. Записать определительную формулу (для производной величины).
5. Выяснить, скалярная это величина или векторная.
6. Указать единицу измерения величины в СИ, объяснить, как она определяется (для производной величины) или как она устанавливается, выбирается (для основной величины).
7. Назвать способы измерения величины, указать, на чем они основаны.
Обращение к этому плану при рассмотрении (повторении) вопросов о массе и силе способствует систематизации и обобщению знаний о величинах вообще и уточнению, закреплению знаний о конкретных величинах — массе и силе. После ответов учащихся о массе и силе (по планам обобщенного характера) целесообразно осуществить сравнение этих величин. При этом обращается внимание на следующее.
Масса характеризует инертные свойства тел, а сила — явление (взаимодействие тел). Масса является основной, скалярной величиной, а сила — производной, векторной величиной. Единица измерения массы устанавливается произвольно, на основе международного соглашения; единица силы определяется исходя из уравнения, выражающего связь между силой, массой и ускорением:
Здесь уместно систематизировать знания о способах измерения массы и силы, обратив особое внимание на способы, с которыми учащиеся впервые познакомились при изучении законов динамики Ньютона.
Анализ знаний учащихся более старших классов показывает, что они хорошо помнят определение массы с помощью рычажных весов и измерение силы с помощью пружинного динамометра, но плохо усваивают и запоминают косвенные методы измерения этих величин (измерение массы на основе использования соотношения
и измерение силы на основе использования формулы
, выражающей второй закон динамики Ньютона).На заключительном занятии по теме представляется благоприятная возможность повторить все известные учащимся способы измерения массы и силы; выяснить, в каких случаях, какие из способов пригодны. Учащиеся приходят к выводу, что прямой способ измерения массы с помощью рычажных весов прост, удобен, но он не пригоден в состоянии невесомости. В таких случаях возможно воспользоваться косвенными методами, основанными на знании формул.
Динамический способ измерения массы требует определения ускорений взаимодействующих тел (тела, масса mт которого измеряется, и тела, с которым данное тело взаимодействует).
Динамический способ измерения силы также требует определения ускорения, приобретаемого телом при действии на него измеряемой силы
. Достоинством этих способов является то, что они могут использоваться в условиях невесомости.Рассматривая способ измерения силы, основанный на использовании формулы
, следует подчеркнуть, что сила характеризует действие на данное тело другого, взаимодействующего с ним тела.При повторении законов движения следует особое внимание обратить на опытное их обоснование и способы их использования на практике.
В заключение целесообразно предложить учащимся 1—2 экспериментальные задачи на второй и третий законы Ньютона, продемонстрировать опыты, объясняемые законом инерции.
Одному из учащихся можно поручить подготовить доклад о жизни и деятельности Ньютона.
Список литературы
1.Бугаев А.И. Методика преподавания физики в средней школе М.,1981
2.Перышкин А.В. и др. Методика преподавания физики в 6-7 кл. средней школы. М .,1985.
3.Методика преподавания физики в средней школе. Частные вопросы. под ред. С.Е.Каменецкого и др. М .,1987
4.Методика преподавания физики в средней школе. 4.1 и 4.2. /под ред. Усовой А.В. и др. М., 1990.
5.Внеурочная работа по физике/ Под ред. О.Ф.Кабардина. -М.: Просвещение, 1983.
6.Резников Л.И. Преподавание физики в средних профессионально-технических училищах.-М.:Высшая школа, 1977.
7.Демонстрационный эксперимент по физике в средней школе; В 2-х частях./Под ред. А.А.Покровского.-М.:Просвящение, 1978.
8.Марголис А.А.,Парфеньтьева Н.Е., Иванова А.А. Практикум по школьному физическому эксперименту.-М.:Просвящение, 1977.