Предлагаемый подход к изучению математики позволяет эффективно формировать у ребенка такие приемы умственной деятельности как классификация, сравнение, анализ и синтез, обобщение, абстрагирование, индуктивные и дедуктивные способы рассуждений, что в свою очередь стимулирует в перспективе интенсивное развитие словесно-логического мышления. Фактически данный подход как раз и обеспечит формирование и развитие того, что называют математическим стилем мышления.
4. В соответствии с выбранной методологией был проведен анализ содержания математического образования дошкольников и младших школьников с точки зрения его соответствия закономерностям построения моделирующей деятельности при обучении ребенка математике. Данный анализ показал наибольшее соответствие данного методу геометрического содержания. Работа на геометрическом материале (базовыми компонентами которого являются фигуры и тела, расположенные на плоскости и в пространстве) позволяет уже на начальных этапах опираться на сенсорные способности ребенка, поскольку адекватные модели практически всех геометрических объектов можно дать ребенку в руки для непосредственного исследования и экспериментирования уже на этапе раннего детства.
Пространственные характеристики, форма и размер объектов проще поддаются вещественному и затем графическому моделированию (а, следовательно, могут восприниматься на чувственном уровне непосредственно), тогда как количественные характеристики удобнее моделировать знаками и символами. С этой точки зрения, геометрическое содержание более соответствует «детскому» способу вхождения в математику, чем арифметическое.
5. Такой подход позволяет построить качественно иную систему отбора содержания для постепенной адаптации дошкольника к миру математических абстракций. Преимущественная работа с геометрическим содержанием позволяет использовать вещественные и графические модели понятий и отношений между ними, дает возможность реализовать и первый, и второй принципы построения развивающего обучения дошкольников: опора на чувственный опыт и постоянное экспериментирование с моделями понятий.
6. Сформулированы принципы отбора содержания курса «Математическое развитие дошкольников», и в соответствии с этими принципами разработана программа курса. Установлено, что оптимальным направлением математического развития дошкольников является акцентуализация развития конструктивного мышления ребенка, а оптимальным средством организационно-методического характера является система логико-конструктивных заданий на математическом содержании. В соответствии с этим разработана методическая система математического развития дошкольников.
7. Сформулированы принципы отбора содержания для организации математического развития младших школьников. Установлено, что оптимальным направлением математического развития младших школьников является акцентуализация развития пространственного мышления ребенка с постепенным усилением ( к 4 классу) логико-символической составляющей теоретического вида мышления, а оптимальным средством организационно-методического характера является система логико-конструктивных заданий на математическом содержании. Разработанная методическая система математического развития младших школьников реализована на геометрическом содержании в виде учебно-методического комплекта.
В рамках поставленных задач выполненное диссертационное исследование можно считать завершенным. В ходе исследования частныегипотезы подтвердились и тем самым генеральная гипотезаможет считаться доказанной.
Таким образом, для проблемы нашего исследования математического развития ребенка дошкольного и младшего школьного возраста предложено возможное решение: непрерывная преемственнаяметодическая система математического развития ребенка в системе дошкольного и начального школьного образования.
Многолетняя апробация разработанной в ходе исследования системы хорошо себя зарекомендовала и подтвердила ее практическую значимость. В то же время, резюмируя содержание исследования и разработанного учебно – методического комплекса, мы остро чувствуем лишь относительный характер его завершенности. Рассматриваемое нами направление открывает перспективы для многолетних исследований сложнейших психолого-дидактических и методических проблем организации индивидуализированного процесса математического развития ребенка и исследования влияния этого развития на личностное становление индивида.
Основное содержание и результаты исследования опубликованы в 103 работах автора общим объемом более 150 п.л., в том числе:
Монографии и книги:
Учебники и учебные пособия.
Методические пособия:
Научные и научно-методические статьи:
39. Моделирование в курсе «Математика и конструирование»// Начальная школа. – 1990. – № 9. – с.
40. Прием графического моделирования при обучении решению задач // Начальная школа. – 1991. – № 4. – с. 18 – 24.
41. Перспективы влияния курса «Математика и конструирование» в начальной школе на содержание и методику обучения геометрии в 5 – 6 классах / В сб. «Материалы областной научно-практической конференции «Развитие региональной системы образования». Мурманск: МО ИПКРО. – 1993. – с.
42. О курсе «Математика и конструирование» // Математике в школе. – 1994. – №5. – с.44 – 47.
43. Об использовании заданий на классификацию при формировании понятия о натуральном числе // Дошкольное воспитание. – 1995г. – №1. – с. 26 – 30.
44. О возможности построения системы развития математического мышления дошкольников / В сб. «Актуальные проблемы обучения и развития детей дошкольного возраста». Мурманск: МГПИ. – 1997. – с. 7– 16.
45. К вопросу о формировании и развитии математических способностей дошкольников / В сб. «Развитие детей дошкольного возраста как субъектов различных видов деятельности». Мурманск: МГПИ. – 1999. – с.
46. Методические спецдисциплины как фактор повышения профессиональной подготовки учителей начальных классов / В сб. «Подготовка специалистов в условиях моноуровнего образования». Мурманск: МГПИ. – 1999. – с. 50 – 57.
47. Почему школьникам так трудно дается геометрия? // Математика в школе. – 1999. – №6. – с.
48. Дошкольный возраст: формирование и развитие математических способностей // Дошкольное воспитание. – 2000. – №2. – с. 69 – 79.
49. Индивидуальная работа с ребенком как необходимое условие развития его личности // Вопросы психологии, – 2000. – №4. – с. 148 – 153.
50. К вопросу о развитии пространственных представлений и пространственного мышления младших школьников // Начальная школа: плюс – минус. – 2000. –№ 4. – с. 55 – 64.
51. Проблема организации индивидуальной работы с ребенком при изучении математики в начальных классах // Начальная школа: плюс – минус. – 2000.– №10. – с. 13 – 28.
52. Формирование математических способностей: пути и формы // Ребенок в детском саду. – 2001. – №1. – с. 5 – 18.
53. Формирование математических способностей: пути и формы ( продолжение) // Ребенок в детском саду. – 2001. – №2. – с. 9 – 26.
54. Индивидуальный подход в формировании и развитии математических способностей младшего школьника // Начальная школа: плюс – минус.– 2001.– №7. – с. 3 – 15.
55. Обучение математике с учетом индивидуальных особенностей ребенка // Вопросы психологии. – 2001. – №5. – с. 116 – 124.
56. Прием формирования устных вычислительных умений в пределах 100 // Начальная школа. – 2001. – №7. – с.
57. Пространственное мышление как необходимый элемент математического развития ребенка // «Новые подходы к пониманию сущности развивающего начального обучения». Межвузовский сборник научных трудов. Псков: ПГПИ. – 2001. – с. 185 – 192.
58. О путях создания преемственных программ обучения детей в детском саду и в начальной школе // «Личность, образование и общество в России в начале XXI века». Межвузовский сборник научных трудов. С-Пб: ЛОИРО. – 2001. – с.
59. Наглядная геометрия как средство развития мышления младшего школьника // Начальная школа: плюс – минус. – 2002. – №1. – с. 34 – 48.
60. Несколько замечаний о профессионализме в научно-методических изданиях // Дошкольное воспитание. – 2002. – №5. – с. 59 – 66 (в соавт.)
61. Современное понимание реализации преемственности между дошкольным и начальным звеньями системы образования // Начальная школа: плюс – минус. – 2002. – №7. – с. 3 – 11.
62. Методическое решение проблемы коррекции дефицитных школьно-значимых функций в начальном образовании (на материале математического образования) / «Детство в эпоху трансформации общества.» Материалы международной научно-практической конференции. Т. 2. Мурманск: МГПИ. – 2002. – с. 53 – 55.
63. Дошкольный возраст: формирование первичных представлений о натуральных числах // Дошкольное воспитание. – 2002. – № 8. – с. 30 – 40.
64. Дошкольный возраст: формирование первичных представлений о натуральных числах (продолжение) // Дошкольное воспитание. – 2002. – № 9. – с. 34 – 42.