Повторите, какое правило мы вывели. Пропустите правило в своей формулировке.
Он записал и вычислил следующим образом:
2+5*3=21
2+5*3=17
Учащиеся высказывают возможные варианты решения этой проблемы: оба результата правильны, они зависят от того, в какой последовательности выполняется сложение и умножение.
В первом примере сначала выполнили сложение, потом умножение. Во втором – сначала умножение, затем сложение.
Учащиеся побуждаются к поиску решения проблемы и приходят к понятию скобок: Нужно расставить скобки:
(2+5)*3=21
2+(5*3)
Правило (формулирует учитель с помощью класса): в выражениях со скобками, первым вычисляют значение выражения в скобках.
Учащиеся проверяют «свое» правило, уточняют его, совершенствуют.
В учебнике это правило дано в таком виде: Если в выражении есть скобки, то сначала выполняют значение выражения в скобках. В полученном выражении выполняют по порядку слева направо сначала умножение и деление, а потом сложение и вычитание.
Учитель сообщает тему урока: сегодняшняя тема урока – порядок действий в выражениях со скобками.
Учащиеся сравнивают «свое» правило с правилом в учебнике.
Учащиеся сами подошли к тому, что будут изучать на данном уроке.
После этого учитель дает задания из учебника, идет наработка умений и закрепление знаний, полученных на данном уроке.
Анализ посещенного урока выявил, что учитель хорошо владеет техникой проблемного обучения, своими вопросами и методикой построения нового материала он подводит учащихся к открытию новых знаний самостоятельно, то есть стимулирует их эвристические способности. Такое построение урока позволяет стимулировать творческую активность учащихся их познавательные возможности. При этом у учащихся возникает ощущение, что они самостоятельно пришли к формулировке правила, которое будут затем использовать в работе с числовым материалом. Эта часть урока наиболее удачна, потому что показывает высокое мастерство учителя и позволяет увидеть направление педагогической мысли, стимулирующее творческое мышление учащихся. Подобное построение урока очень актуально при изложении нового материала, практика эвристических упражнений и заданий должна всегда присутствовать на уроках, и особенно такая методика изложения материала важна для уроков математики. Вне зависимости от дальнейшей работы на уроке важно в конце урока попросить учащихся сформулировать полученное правило своими словами (что и сделал учитель). Позитивные ответы учащихся их формулировки новых знаний позволяют увидеть, что ученики хорошо усвоили новый материал.