Смекни!
smekni.com

Комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников (стр. 5 из 8)

а) 89 + 47 б) 57+29 в) 76+57

90 + 47 57+30 76+60

Сравни равенства в каждой паре и сделай вывод».

2. Задания на формирование представления о закономерности, как правила, по которому записаны ряды чисел: на выявление закономерности.

Например, «Найди правила, по которым составлены ряды чисел:

а) 0,5; 0,05; 0,005; 0,0005; …;

б) 0,2; 0,4; 0,6; 0,8; …;

в) 0,12; 2,14; 4,16; 6,18; ….

Запиши в каждом ряду еще три числа по тому же правилу».

3. Задания на формирование представления о соответствии: на соотнесение предметной, графической и символической моделей; на установление соответствия между символическими моделями.

Например, «Соедини с числом 5 те выражения, значения которых делятся на 5, если а делится на 5».



Эти учебные задания формулируются в основном на числовом материале, причем они усложняются и варьируются как по форме, так и по содержанию.

Решение задач на прямую и обратную пропорциональные зависимости посвящен решению текстовых задач на прямую и обратную пропорциональные зависимости арифметическим способом. Среди таких задач выделяются задачи, в которых числовые данные находятся в некотором отношении, что предполагает ещё один способ решения, представляющий интерес с точки зрения функциональной пропедевтики [36, с.105].

Кроме того, придать функциональный характер текстовым задачам можно с помощью дополнительных вопросов, направленных на изменение данных задачи, условия, вопроса, на соотнесение условия с различными выражениями и равенствами. Эти приемы помогают учащимся представить величины, рассматриваемые в задаче в движении, изменении, что позволяет формировать у учащихся функциональный стиль мышления.

На программном содержании курса математики начальных классов используются также учебные задания следующих видов:

1) задания на соотнесение предметной модели с числовым выражением (равенством);

2) задания на установление соответствия между символическими моделями;

3) задания на конструирование графической модели по заданной графической модели;

4) задания на конструирование символической модели по заданной вербальной модели;

5) задания на выбор символической модели, соответствующей вербальной модели;

6) задания на конструирование числовых равенств по заданным условиям;

7) задания на установление соответствия между символической и графической моделью;

8) задания на выбор графической модели, соответствующей символической модели;

9) задания на преобразование на плоскости;

10) задания на конструирование графической модели, соответствующей символической модели и т.д. [20, с.110].

Приведем примеры заданий:

1. Задание на конструирование числовых равенств по заданным условиям:

Выбери два отношения, из которых можно составить верное равенство. Запиши это равенство:

1,5 : 2; 3 : 6; 4,5 : 8; 6 : 8; 15 : 10.

2. Задание на конструирование графической модели, соответствующей символической модели:

Проверь, будут ли величины х и у прямо пропорциональными при данных значениях:

х 1 4 16 64 256
у 0,6 2,4 9,6 38,4 153,6

Если возникнут трудности при выполнении задания, то:

представь данную таблицу в таком виде:


и найди отношения соответствующих значений величин х и у.

3. Задание на преобразование на плоскости:

Впиши пропущенные слова и числа, чтобы получились верные высказывания:

1) точка А (3; 4) при перемещении вправо на 2 единичных отрезка перешла в точку В (…;…);

2) точка L (5; -2) при перемещении______________на___единичных отрезков перешла в точку M (5; 2);

3) точка Х (1; 1) при перемещении вверх на 3 и вправо на 6 единичных отрезков перешла в точку У (…;…);

4) точка V (2; 3) при перемещении__________на___и___________ на___ единичных отрезков перешла в точку W (7; -2).

4. Задание на конструирование графической модели, соответствующей символической модели:

а) Выбери единичный отрезок и построй точки в координатной плоскости:

А (0,6; 0), В (0;

), С (0,1; 0,7), D
, E
, К
.

б) Выбери единичный отрезок и построй точки в координатной плоскости:

А(600; 0), B(0; -300), C(100; 700), E(-500; -600), K(900; -400).

Все учебные задания, обладают следующими характеристиками: вариативностью; неоднозначностью решений; нацеленностью на формирование приемов умственной деятельности (таких, как анализ и синтез, сравнение, аналогия, классификация и обобщение); отображением разнообразных закономерностей и зависимостей; включенностью их в содержательную линию курса математики начальных классов [10, с.95].

Таким образом, рассмотрев теоретические основы формирования представлений о функциональной зависимости у младших школьников, мы пришли к выводу, что функциональная зависимость является одной из тех математических идей, которые способны объединить в единое целое все разделы математики, включенные в школьный курс. Функциональная зависимость отражает практическую направленность курса математики, взаимосвязь величин в естественнонаучных дисциплинах, а также формирует функциональное мышление школьников. Исходя из опыта обучения, известно, что понятие функции является абстрактным и довольно сложным для восприятия учащимися. Поэтому в процессе реализации данной линии необходимо усилить наглядность изучаемых объектов и понятий в рамках отведенного времени, предоставить учащимся возможность увидеть зависимость не только в виде статичной модели, но и в динамике, дать возможность учащимся непосредственно задавать, изменять и изучать функции при помощи интерактивных моделей, расширить систему задач при помощи упражнений, содержащих анимацию и элементы управления и т.д. Такому «живому» изучению функциональной зависимости может способствовать применение комплекса упражнений, направленных на формирование представлений о функциональной зависимости.

Следующая глава будет посвящена экспериментальной работе по формированию представлений младших школьников о функциональной зависимости.


Глава 2. Опытно-экспериментальная работа по формированию представлений о функциональной зависимости у младших школьников с применением комплекса упражнений

2.1 Диагностика уровней сформированности представлений младших школьников о функциональной зависимости

Для формирования представлений у младших школьников о функциональной зависимости на базе МОУ СОШ №31 города Ишима был проведен эксперимент.

В эксперименте приняли участие учащиеся 3 «А» (экспериментальная группа) и 3 «Б» (контрольная группа) классов в количестве по 20 человек в каждом классе. Список детей, участвующих в исследовании приведен в приложении 1.

Эксперимент состоял из трех этапов:

1 этап – констатирующий этап - диагностика уровня сформированности представлений о функциональной зависимости у младших школьников.

2 этап – формирующий этап - разработан и реализован комплекс упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

3 этап – контрольный этап - проведен анализ эффективности занятий с применением комплекса упражнений, направленных на формирование представлений о функциональной зависимости у младших школьников.

Для выявления уровня сформированности представлений о функциональной зависимости у младших школьников были выделены следующие функциональные умения:

1) строить график функции;

2) записывать координаты точек;

3) находить наибольшее и наименьшее значения функции на заданном промежутке;

4) оперировать функциональной символикой.

На основе выделенных умений, а также для аналитической обработки результатов исследования и получения количественных показателей были выделены три уровня сформированности представлений о функциональной зависимости у младших школьников: низкий, средний и высокий.

С целью определения уровня сформированности представлений о функциональной зависимости у младших школьников в ходе констатирующего эксперимента организовывались беседы с учащимися 3-х классов, проводились контрольные работы, по результатам выполнения которых выявлялись трудности, возникающие у учащихся при усвоении понятия функции, функциональной зависимости.

Чтобы оценить способность учащихся применять функциональные умения для решения практических задач им были предложены ситуационные задачи. В силу своей межпредметности, интегративности ситуационные задачи способствуют систематизации предметных знаний на деятельностной практико-ориентированной основе, когда ученики, осваивая универсальные способы деятельности, решают личностно-значимые проблемы с использованием предметных знаний. Следует отметить, что в процессе обучения математике учащиеся ни экспериментального, ни контрольного классов с такими задачами не встречались.

Приведем пример одной из ситуационных задач, которые предлагались учащимся:

Задача. «Эти простые – непростые зависимости»

Каждый слышал поговорку: «Как аукнется, так и откликнется». А ты замечал на себе проявление такой закономерности?

Текст 1. Маша и Миша решили посадить одновременно цветы, чтобы подарить их маме к 8 марта. В течение 12 недель Маша поливала цветок регулярно, а Миша иногда забывал. Высота цветка Маши в конце каждой недели представлена в таблице 1:


Неделя, t 1 2 3 4 5 6 7 8 9 10 11 12
Высотацветка, h (см) 2 4 6 8 10 12 14 16 18 20 22 24

Текст 2. Существуют различные шкалы для измерения температуры. Для перевода температуры, измеренной в градусах Цельсия, в градусы Фаренгейта пользуются формулой

, где С – число градусов по шкале Цельсия, а F – число градусов по шкале Фаренгейта. Для каждого значения температуры по Цельсию с помощью этой формулы можно найти соответствующее значение температуры по шкале Фаренгейта.