В качестве общих целей математического образования рассматриваются также умение видеть математические закономерности в повседневной практике и использовать их на основе математического моделирования, освоение математической терминологии как слов родного языка и математической символики как фрагмента общемирового искусственного языка, играющего существенную роль в процессе коммуникации и необходимого в настоящее время каждому образованному человеку.
Гуманитарная ориентация обучения математике как общеобразовательному предмету определяет конкретизацию общих целей в построении методической системы обучения математике, отражающей приоритет развивающей функции обучения. С учетом очевидной и безусловной необходимости приобретения всеми учащимися определенного объема конкретных математических знаний и умений, цели обучения математике образовательной технологии “Школа 2100” могут быть сформулированы следующим образом:
— овладение комплексом математических знаний, умений и навыков, необходимых: а) для повседневной жизни на высоком качественном уровне и профессиональной деятельности, содержание которой не требует использования математических знаний, выходящих за пределы потребностей повседневной жизни; б) для изучения на современном уровне школьных предметов естественнонаучного и гуманитарного циклов; в) для продолжения изучения математики в любой из форм непрерывного образования (в том числе, на соответствующем этапе обучения, при переходе к обучению в любом профиле на старшей ступени школы);
— формирование и развитие качеств мышления, необходимых образованному человеку для полноценного функционирования в современном обществе, в частности эвристического (творческого) и алгоритмического (исполнительского) мышления в их единстве и внутренне противоречивой взаимосвязи;
— формирование и развитие у учащихся абстрактного мышления и, прежде всего, логического мышления, его дедуктивной составляющей как специфической характеристики математики;
— повышение уровня владения учащимися родным языком с точки зрения правильности и точности выражения мыслей в активной и пассивной речи;
— формирование умений деятельности и развитие у учащихся морально-этических качеств личности, адекватных полноценной математической деятельности;
— реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира;
— формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и его закономерностей, в частности как базы компьютерной грамотности и культуры;
— ознакомление с ролью математики в развитии человеческой цивилизации и культуры, в научно-техническом прогрессе общества, в современной науке и производстве;
— ознакомление с природой научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности.
Стремительные социальные преобразования, которые переживает наше общество в последние десятилетия, кардинально изменили не только условия жизни людей, но и образовательную ситуацию. В связи с этим остро актуальной стала задача создания новой концепции образования, отражающей как интересы общества, так и интересы каждого отдельного человека.
Таким образом, в последние годы в обществе сложилось новое понимание главной цели образования: формирование готовности к саморазвитию, обеспечивающей интеграцию личности в национальную и мировую культуру.
Реализация этой цели требует выполнения целого комплекса задач, среди которых основными являются:
1) обучение деятельности — умению ставить цели, организовывать свою деятельность для их достижения и оценивать результаты своих действий;
2) формирование личностных качеств — ума, воли, чувств и эмоций, творческих способностей, познавательных мотивов деятельности;
3) формирование картины мира, адекватной современному уровню знаний и уровню образовательной программы.
Следует подчеркнуть, что ориентация на развивающее обучение вовсе не означает отказ от формирования знаний, умений и навыков, без которых невозможно самоопределение личности, ее самореализация.
Именно поэтому дидактическая система Я.А. Коменского, впитавшая в себя вековые традиции системы передачи ученикам знаний о мире, и сегодня составляет методологическую основу так называемой “традиционной” школы:
· Дидактические принципы — наглядность, доступность, научность, систематичность, сознательность усвоения учебного материала.
· Метод обучения — объяснительно-иллюстративный.
· Форма обучения — классно-урочная.
Однако для всех очевидно, что существующая дидактическая система, не исчерпав своей значимости, вместе с тем не позволяет эффективно осуществлять развивающую функцию образования. В последние годы в работах Л.В. Занкова, В.В. Давыдова, П.Я. Гальперина и многих других педагогов-ученых и практиков сформировались новые дидактические требования, которые решают современные образовательные задачи с учетом запросов будущего. Основные из них:
Основной вывод психолого-педагогических исследований последних лет заключается в том, что формирование личности ученика и продвижение его в развитии осуществляется не тогда, когда он воспринимает готовое знание, а в процессе его собственной деятельности, направленной на “открытие” им нового знания.
Таким образом, основным механизмом реализации целей и задач развивающего обучения является включение ребенка в учебно-познавательную деятельность. В этом и заключается принцип деятельности, Обучение, реализующее принцип деятельности, называют деятельностным подходом.
Еще Я.А. Коменский отмечал, что явления нужно изучать во взаимной связи, а не разрозненно (не как “кучу дров”). В наше время этот тезис приобретает еще большую значимость. Он означает, что у ребенка должно быть сформировано обобщенное, целостное представление о мире (природе — обществе — самом себе), о роли и месте каждой науки в системе наук. Естественно, что при этом знания, формируемые у учащихся, должны отражать язык и структуру научного знания.
Принцип единой картины мира в деятельностном подходе тесно связан с дидактическим принципом научности в традиционной системе, но гораздо глубже его. Здесь речь идет не просто о формировании научной картины мира, но и о личностном отношении учащихся к полученным знаниям, а также об умении применять их в своей практической деятельности. Например, если речь идет об экологических знаниях, то учащийся должен не просто знать, что нехорошо срывать те или иные цветы, оставлять после себя мусор в лесу и т.д., а принять свое собственное решение так не делать.
Принцип непрерывности означает преемственность между всеми ступенями обучения на уровне методологии, содержания и методики.
Идея преемственности также не является новой для педагогики, однако до сих пор она чаще всего ограничивается так называемой “пропедевтикой”, а не решается системно. Особую актуальность приобрела проблема преемственности в связи с появлением вариативных программ.
Реализация непрерывности в содержании математического образования связана с именами Н.Я. Виленкина, Г.В. Дорофеева и др. Управленческие аспекты в модели “дошкольная подготовка — школа — ВУЗ” в последние годы разработаны В.Н. Просвиркиным.
Все дети разные, и каждый из них развивается своим темпом. Вместе с тем обучение в массовой школе сориентировано на некий средний уровень, который слишком высок для слабых детей и явно недостаточен для более сильных. Это тормозит развитие как сильных детей, так и слабых.
Чтобы учесть индивидуальные особенности учащихся, часто выделяют 2, 4 и т.д. уровня. Однако реальных уровней в классе ровно столько, сколько детей! Возможно ли их точно определить? Не говоря уже о том, что практически трудно учесть даже четыре — ведь для учителя это означает 20 подготовок в день!
Выход прост: выделить всего лишь два уровня — максимум, определяемый зоной ближайшего развития детей, и необходимый минимум. Принцип минимакса заключается в следующем: школа должна предложить ученику содержание образования по максимальному уровню, а ученик обязан усвоить это содержание по минимальному уровню (см. приложение 1).
Система минимакса является, видимо, оптимальной для реализации индивидуального подхода, так как это саморегулирующаяся система. Слабый ученик ограничится минимумом, а сильный — возьмет все и пойдет дальше. Все остальные разместятся в промежутке между этими двумя уровнями в соответствии со своими способностями и возможностями — они сами выберут свой уровень по своему возможному максимуму.
Работа ведется на высоком уровне трудности, но оценивается лишь обязательный результат, и успех. Это позволит сформировать у учащихся установку на достижение успеха, а не на уход от “двойки”, что гораздо важнее для развития мотивационной сферы.
Принцип психологической комфортности предполагает снятие по возможности всех стрессообразующих факторов учебного процесса, создание в школе и на уроке такой атмосферы, которая расковывает детей и в которой они чувствуют себя “как дома”.