Учні 9-го класу готові до оволодіння вмінням виконувати такі зображення. Більшість з них правильно зображає прямокутний паралелепіпед, куб, піраміду, циліндр, конус, кулю, хоча поширеною помилкою є неправильне зображення невидимих ліній суцільною лінією.
Під час вивчення питань, пов'язаних із зображенням геометричних тіл, ефективним засобом є комп'ютер. За його допомогою легко виділити най-значиміше, продемонструвати побудову зображення у відповідній послідовності у динаміці.
З обчисленням об'ємів геометричних тіл учні ознайомлені в курсі математики 5–6-х класів. Надалі слід звернути увагу на те, що кожне геометричне тіло має певний об'єм, виражений додатним числом. Обчислюючи об'єми, треба брати до уваги такі властивості.
1. Рівні тіла мають рівні об'єми.
2. Якщо тіло складається з частин, що не мають самоперетинів, то його об'єм дорівнює сумі об'ємів частин, з яких воно складається.
3. Одиницею об'єму вважають об'єм куба, ребро якого дорівнює одиниці довжини.
Зауважимо, що зазначені властивості об'ємів аналогічні до властивостей площ.
Оскільки формула для обчислення об'єму прямокутного паралелепіпеда відома учням ще з 5-го класу, то її необхідно пригадати:
,де
– виміри паралелепіпеда.Якщо добуток
розглядати як площу основи паралелепіпеда, – його висоту, то можна сказати так: об'єм прямокутного паралелепіпеда дорівнює добутку площі його основи на висоту.Після цього дається формула для обчислення об'єму прямої призми:
,де
– площа основи призми, – її висота.Об'єм циліндра, як і об'єм призми, також дорівнює добутку площі його основи на висоту.
Варто пригадати, що основою циліндра є круг. Якщо його радіус позначити через
, а висоту циліндра через , то його об'єм дорівнює: .Формули для обчислення об'ємів піраміди, конуса, кулі учням також уже відомі. Бажано зауважити, що формула для обчислення об'єму конуса аналогічна до відповідної формули для обчислення об'єму піраміди. Формули об'ємів і площ поверхонь многогранників і тіл обертання відпрацьовуються під час розв'язування відповідних задач.
На завершення потрібно сказати, що названі формули будуть доведені в систематичному курсі стереометрії.
Обсяг, зміст і характер викладу поданого вище стереометричного матеріалу цілком доступні для учнів.
2.2.2 Система вправ для формування початкових стереометричних знань і методика їх розв’язування
Усі психічні процеси, зокрема просторова уява, формуються і удосконалюються в результаті діяльності. Таку діяльність необхідно стимулювати й координувати в процесі навчання математики через розв'язування задач. Запропонована нами система вправ має за мету формувати в учнів просторові уявлення, готувати їх до сприйняття стереометричного матеріалу в 10–11-х класах.
Вона включає вправи трьох типів на формування:
1)просторових уявлень та уяви учнів;
2)вимірювальних та обчислювальних навичок;
3)конструктивних навичок.
Належну увагу необхідно приділити формуванню навичок оперування просторовими уявленнями, одержаними в результаті попередньої діяльності. При цьому як засіб наочності разом з моделями геометричних тіл доцільно використовувати їх зображення. Уміння бачити просторові образи на готовому кресленні є важливим стимулом для розвитку просторових уявлень та уяви. У результаті виконання відповідних вправ образи поступово втрачають індивідуальні ознаки, набувають абстрактнішого характеру.
Мінімальний обсяг матеріалу, що вивчається зі стереометрії в основній школі, визначають обов'язкові результати навчання. Наступному накопиченню та переробці у свідомості учнів геометричних фактів, формуванню та розвитку просторових уявлень, конструктивних здібностей має сприяти подана нижче система задач. Для деяких випадків, де це потрібно, описано методику роботи з ними. Задачі підвищеної складності позначено зірочкою (*).
Учні вже мають уявлення про паралельні та перпендикулярні прямі. На другому етапі ми пропонуємо їх перенести і на простір. У зв'язку з цим доцільним є виконання серії вправ на засвоєння учнями взаємного розміщення прямих і площин у просторі. Спочатку це потрібно робити на різних моделях геометричних тіл, поступово переходячи до їх наочних зображень.
Для формування уявлень про взаємне розміщення прямих у просторі, а також прямої та площини, для більшої наочності доцільно використовувати каркасні та скляні моделі. Розглядаючи поняття про взаємне розміщення площин краще користуватися скляними моделями та моделями, виготовленими з картону.
1.На моделі прямої трикутної призми покажіть ребра, які лежать на мимобіжних прямих.
2.На моделі прямокутного паралелепіпеда покажіть ребра, перпендикулярні до нижньої основи.
3.На моделі піраміди покажіть кілька граней, що перетинаються.
4.На моделі циліндра покажіть паралельні грані.
5.Дано модель прямої призми, основою якої є паралелограм. Покажіть:
а) пари паралельних граней;
б) пари перпендикулярних граней.
6. На рис. 18 зображено чотирикутну піраміду SABCD. Назвіть усі ребра, які лежать на прямих, що не перетинають: а) ребро SC; б) ребро AB.
Рис. 18
7. На рис. 19 зображено пряму трикутну призму ABCA1B1C1. Назвіть:
а) ребра, паралельні ребру AA1;
б) ребра, перпендикулярні до ребра BC.
Рис. 19
8. На зображенні прямокутного паралелепіпеда (рис. 20) назвіть:
а) взаємно перпендикулярні грані;
б) грань, паралельну грані BB1C1C.
Рис. 20
9. Зобразіть будь-які два відрізки куба (які не є його ребрами) з кінцями у вершинах куба (рис. 21) такі, щоб вони були:
а) паралельними;
б) перпендикулярними;
в) мимобіжними.
Рис. 21
У 9 класі продовжується формування в учнів уявлень про геометричні тіла за їх розгортками та зображеннями, зокрема під час обчислення площ поверхонь цих тіл за розмірами, поданими на розгортках тазображеннях.
Наведемо приклади таких задач.
10.Розгорткою бічної поверхні циліндра є прямокутник зі сторонами 63 см і 3,2 см. Обчисліть радіус основи циліндра (розгляньте два випадки).
11.Обчисліть площу повної поверхні конуса, якщо твірна конуса дорівнює 12см, центральний кут розгортки 120°.
12.За поданими на розгортках призм розмірами (рис. 22) обчисліть площі їх поверхонь. Основи призм – правильні многокутники. (Одиниці вимірювання подано в дециметрах.)
13.Обчисліть площі поверхонь (бічну та повну) прямих призм за розмірами, поданимина рис. 23. Основи призм – правильні многокутники. (Одиниці вимірювання подано в сантиметрах.)
Рис. 22 Рис. 23
Центральне місце на другому етапі відводиться вправам на зображення простіших геометричних тіл. Їх розв'язуванню сприяє попередня підготовча робота, а саме: розпізнавання многогранників і тіл обертання на моделях та їх зображеннях, знаходження плоских фігур на зображеннях геометричних тіл.
Після того як учні ознайомилися з побудовою зображень призми, піраміди, циліндра, конуса, кулі, слід запропонувати їм виконати вправи на закріплення. Зокрема, це можуть бути вправи такого типу.
14. Накресліть прямокутний паралелепіпед і позначте його вершини буквами. Назвіть:
а) ребра, що лежать на паралельних, перпендикулярних, мимобіжних прямих;
б) паралельні, перпендикулярні грані.
15.На зображенні куба проведіть площину так, щоб одержати квадратний переріз куба.
16.На рис. 24 дано зображення куба, на ребрах якого взято три точки. Побудуйте фігуру (переріз), по якій площина, що проходить через дані точки, перетне куб.
17.
Рис. 24
18.На рис. 25 дано зображення прямокутного паралелепіпеда, на ребрах якого взято три точки. Побудуйте переріз паралелепіпеда площиною, що проходить через дані точки. Яка фігура утворилась у перерізі?
Рис. 25
18.Зобразіть прямий паралелепіпед і проведіть його діагоналі.
19.Зобразіть пряму трикутну призму. Проведіть діагональ бічної грані.
20.Побудуйте зображення прямої трикутної призми. Сполучіть кінці сторони нижньої основи та протилежну вершину верхньої основи. Яка фігура утворилася в перерізі?
21.Зобразіть круговий циліндр. Позначте на зображенні радіус нижньої основи.
22.Зобразіть циліндр та побудуйте зображення його осьового перерізу.
23.Побудуйте зображення циліндра. Позначте точку на колі верхньої основи і точку на колі нижньої основи. Сполучіть їх відрізком.