Смекни!
smekni.com

Вивчення елементів стереометрії у курсі геометрії 9 класу (стр. 7 из 13)

Особливістю вивчення елементів стереометрії у 9-му класі (порівняно з питаннями планіметрії) є те, що майже всі стереометричні факти повідомляються у цій темі без доведення. Їх обґрунтування та доведення – завдання систематичного курсу стереометрії. Засвоєння властивостей стереометричних фігур має здійснюватися з опорою на наочність: моделі, таблиці, рисунки тощо.

Вивчення розділу «Початкові відомості зі стереометрії» розпочинаємо з розгляду питання про взаємне розміщення точок, прямих і площин. Уявлення про площину, про взаємне розміщення точок і прямих на площині та деякі їх властивості учні одержали в курсі планіметрії. Їх слід повторити, навести приклади плоских поверхонь (поверхня підлоги, стелі, шибки, спокійного озера тощо).

Після цього вчитель пропонує зображення площини (здебільшого у вигляді паралелограма), її позначення (буквами грецького алфавіту

тощо). Учні встановлюють, що єдину площину можна провести: 1) через дві прямі, які перетинаються; 2) через дві паралельні прямі; 3) через пряму та точку поза нею; 4) через три точки, що не лежать на одній прямій. До кожного випадку доцільно зробити відповідні рисунки.

Оскільки питання про взаємне розміщення прямих у просторі учням відоме з курсу планіметрії 7-го класу, то його варто повторити, сформулювати означення паралельних, мимобіжних прямих, ознаку паралельності прямих у просторів

Одночасно з цим потрібно з'ясувати випадки взаємного розміщення точки та площини, прямої та площини, навчитися виконувати умовні зображення площини та точки, яка лежить у цій площині або поза нею; площини та прямої, що лежить у площині, має з нею одну спільну точку (перетинає її), або такої, що не має спільних точок (паралельної їй). Можна дати означення паралельних прямої та площини: пряму та площину називають паралельними, якщо вони не мають спільних точок.

Слід показати учням, що коли пряма

та площина
паралельні, то використовуються такі записи:

або
.

Далі формулюємо ознаку паралельності прямої і площини.

Наступним кроком єрозгляд випадків взаємного розміщення двох площин. Логічно міркуючи, учні без особливих труднощів доходять висновку, що дві площини можуть не мати спільних точок (бути паралельними) або перетинатися по прямій. На моделях прямокутного паралелепіпеда, прямої призми учні інтуїтивно вказують їх паралельні грані і такі, що перетинаються. Учитель додає, що площини, у яких лежать ці грані, відповідно паралельні або перетинаються. За аналогією з означенням паралельних прямих на площині варто дати означення паралельних площин: дві площини називають паралельними, якщо вони не мають спільних точок.

За допомогою двох аркушів паперу пропонуємо учням сконструювати моделі:

а) паралельних площин;

б) площин, що перетинаються.

Рисунки, що ілюструють паралельність або перетин площин, учитель виконує на дошці, а учні відтворюють у зошитах. Після цього вчитель формулює ознаку паралельності площин.

Перед розглядом перпендикулярності прямої та площини, треба повторити питання про перпендикулярність прямих на площині, у просторі, пригадати означення перпендикулярних прямих.

Уявлення про перпендикулярність прямої та площини дають стовп і поверхня землі, ніжка стільця та підлога, канат у спортзалі, прикріплений до стелі, тощо. За допомогою спиці та картонного паперу створюємо модель прямої, перпендикулярної до площини. Перпендикулярність перевіряємо за допомогою косинця. Прикладаючи косинець катетом до спиці з кількох сторін, показуємо, що в кожному випадку спиця з картонкоюутворює прямий кут. Так підводимо учнів до означення перпендикулярних прямої та площини: пряму, яка перетинає площину, називають перпендикулярною до цієї площини, якщо вона перпендикулярна до будь-якої прямої, що лежить у цій площині і проходить через точку перетину.

Слід показати учням, що коли пряма

перпендикулярна до площини
, то це записують так:

або
.

Варто повідомити учням, що у курсі стереометрії доводиться ознака перпендикулярності прямої та площини: «якщо пряма перпендикулярна до двох прямих, що лежать у площині та перетинаються, то вона перпендикулярна до даної площини».

Основну увагу треба звернути на формування в учнів поняття відстані від точки до площини. Насамперед слід повторити, як знаходиться відстань від точки до прямої. Якщо пряма

перпендикулярна до площини
і точка
лежить у цій площині, то відрізок
називають перпендикуляром, опущеним з точки
на площину
. Довжину цього перпендикуляра називають відстанню від точки
до площини
.

Розгляд можливих випадків перетину двох площин приводить до уявлення про перпендикулярні площини. Нехай дві площини

та
перетинаються по прямій
. Якщо деяка площина
перпендикулярна до прямої
і перетинає площини
та
по перпендикулярних прямих, то площини
та
називають перпендикулярними. Це записують так:

або
.

Далі слід дати означення перпендикулярних площин і сформулювати ознаку, яка доводиться в систематичному курсі стереометрії. Таке пояснення необхідно також супроводжувати показом моделей. Якщо косинець прикласти до двох площин, що перетинаються так, що його катети будуть перпендикулярні до лінії їх перетину, то ми матимемо уявлення про перпендикулярні площини. Перпендикулярність площин на практиці можна перевірити за допомогою виска (шнура з тягарцем). Так, наприклад, перевіряють вертикальність стін будівлі.

Важливо, щоб учні могли показувати приклади взаємного розміщення прямих і площин у просторі на моделях відомих їм геометричних тіл, на предметах навколишнього середовища.

За дослідженнями психологів, середній шкільний вік є найбільш сензитивним для засвоєння методу проектування. Враховуючи це в практиці навчання, необхідно вже в курсі планіметрії ознайомити учнів з виконанням зображень геометричних тіл. У зв'язку з цим як спосіб зображення просторових фігур доцільно розглянути паралельне проектування, а саме конструкцію паралельного проектування точки та фігури на площину, сформулювати властивості паралельної проекції.

Під час вивчення розділу «Елементи стереометрії» відомості про многогранники, які учні одержали раніше, необхідно узагальнити й систематизувати. А саме: на основі попереднього досвіду учнів потрібно дати загальне поняття многогранника, його граней, ребер, вершин. Доцільно сформулювати таке означення.

Многогранник – це геометричне тіло, поверхня якого складається із скінченної кількості плоских многокутників.

Многокутники, які обмежують многогранник, називають його гранями, їх сторони – ребрами, а вершини – вершинами многогранника.

При цьому вчителю слід продемонструвати різні моделі многогранників. Учні повинні вміти показувати їх грані, ребра, вершини.

Корисно нагадати учням, що з найпростішими з многогранників – призмами і пірамідами – вони зустрічалися раніше і вже ознайомлені з їх елементами та деякими властивостями.

Перший вид многогранників, який слід розглянути, – призми. Відомості, одержані про призму раніше, варто пригадати, повторити. Зокрема, призму учні мають розпізнавати як многогранник, у якого дві грані – довільні рівні многокутники з відповідно паралельними сторонами, а решта граней – паралелограми. Рівні многокутники називають основами призми, а паралелограми – бічними гранями.

Демонструючи моделі різних призм, учитель має звертати увагу учнів на те, що є призми, у яких бічні грані – прямокутники. У цьому випадку бічне ребро перпендикулярне до площини основи. Можна дати означення прямої призми: призму називають прямою, якщо її бічні ребра перпендикулярні до основ. В іншому випадку призма буде похилою. У 9-му класі досить обмежитися розглядом прямої призми.