Смекни!
smekni.com

Вивчення геометричного матеріалу в початковій школі (стр. 3 из 4)

а) Довжина накресленого на дошці відрізка АО дорівнює 8 дм. Побудуй в зошиті зображення цього відрізка у зменшеному вигляді, приймаючи, що 1 см відрізка в зошиті означатиме 1 дм відрізка на дошці.

Якою буде довжина накресленого в зошиті відрізка? У скільки разів відрізок на дошці довший, ніж накреслений у зошиті?

б) Відстань між містами 70 км. зобразіть цю відстань відрізком у зошиті, приймаючи, що 1 см становить 10 км.

Наводимо приклади завдань, в яких використовується поняття масштабу.

а) Відстань між двома населеними пунктами зображено відрізком КМ. обчисліть цю відстань, взявши до уваги, що в 1 см вміщається 5 км.

б) Знайдіть відстані між Києвом та Вінницею і Києвом та Житомиром. Порівняйте відстані. Масштаб: в 1 см – 20 км.

За допомогою відрізків подається поняття «ламана лінія». Спершу дітям слід запропонувати розглянути два малюнки: один із зображенням відрізків, другий – ламаних ліній, та визначити їх схожість і відмінність. Потім подається окрема ламана лінія і ставиться запитання: із скількох відрізків складено ламану лінію? Так діти поступово підходять до ознайомлення зі складнішими геометричними формами.

ІІ. 3 Введення в початковій школі поняття кута

Всім відомо, що у молодших школярів переважає образне, предметне мислення. Тому під час першого ознайомлення з кутом його можна зробити з двох паличок і шматочка пластиліну. Палички – сторони кута, а шматок пластиліну – його вершина. Уже в цей час можна порівнювати кути, накладаючи їх один на одний. Важливо правильно сформувати уявлення про величину кута, щоб діти не вважали, що більшим вийшов кут у того, в кого були довші палички. Зумовлене це тим, що в учнів ще не сформоване поняття променя, і ми користуємося тільки моделлю цього поняття. А моделлю променя є відрізок, який за потреби можна як завгодно далеко продовжити.

Моделлю кута можуть також служити дві планки, скріплені цвяшком: розсуваючи і зсуваючи планки, діставатимемо кути різної величини; стрілки годинника; гострі частини ножиць. Діти самі наводять багато цікавих прикладів: це і відкритий дзьоб лелеки, і клешні рака, і гілочки дерев (якщо вони прямі).

На наступному етапі вивчення кутів можна пов’язувати з вивченням многокутників. У свідомості дитини кут уже не буде уявлятися як відірваний кут многокутника, а учень розумітиме, що його утворюють два промені, яким належать сторони многокутника, що виходять з однієї вершини. Важливо звернути увагу на те, як діти показують кут. Робити це потрібно віялоподібним рухом указки від однієї сторони кута до іншої, встановивши один її кінець у вершині кута.

Ще однією важливою проблемою, з якою стикаються класоводи – формування у школярів уявлення про величину кута.

Як ми вже згадували, учні 2 класів ознайомлюються з прямим кутом. Для цього варто розглянути його утворення в процесі перегинання листка паперу. Кожному учневі треба дати аркуш паперу довільної форми. Потім під керівництвом учителя діти складають аркуші вдвічі, притискують лінії згину. Після цього перегинають ще раз, стежачи за тим, щоб частини утвореної раніше лінії перегину сумістилися. Таким чином у дітей утвориться прямий кут. Якщо папір розгорнути, вони побачать, що дві лінії перегину ділять аркуш на чотири частини. Утворилось чотири прямі кути, які мають спільну вершину.

За допомогою паперової моделі прямого кута учнів відшукують прямі і непрямі кути на предметах з навколишнього оточення і на косинці, який потім використовують для порівняння кутів: чи є він прямим, чи більшим, або меншим від прямого. Зручніше при цьому користуватися косинцем з прозорої пластмаси.

Закріпити навички вимірювання кутів можна за допомогою різноманітних вправ.

Більшу увагу потрібно приділяти вимірюванню кутів за допомогою малки. Якщо її немає, то модель можна виготовити з двох смужок цупкого паперу, скріпивши їх дротиками так, щоб вони розсувались. За допомогою малки діти наочно впевнюються, що величина кута залежить не від довжини його сторін, а від їх взаємоположення одна відносно іншої.


ІІ. 4 Ознайомлення учнів з многокутниками

У початкових класах многокутники і круг постійно використовуються як дидактичний матеріал. Під час вивчення чисел першого десятка різні фігури виступають лічильним матеріалом; паралельно учні уточнюють зображення окремих фігур, запам’ятовують їх назви. Окремі види многокутників вводяться одночасно з вивченням чисел 3, 4, 5, 6. наприклад, під час вивчення числа 3 діти ознайомлюються з трикутником, розглядають його елементи: сторони, кути, вершини. Ці поняття конкретизують за допомогою запитань: Скільки в трикутнику кутів? вершин? сторін?

Сторони, вершини і кути многокутника потрібно показувати учням на моделях плоских фігур. Важливо, щоб і діти правильно їх показували: вершини – це точки, тому указку слід направляти у відповідну точку; сторони – це відрізки, тому показують їх від однієї вершини до іншої, проводячи указкою вздовж усього відрізка; кут – віялоподібним рухом указки. Треба звернути увагу дітей і на те, що вершина многокутника є і вершиною відповідного кута.

Проаналізувавши досвід роботи з вивчення многокутників у початкових класах, можна запропонувати декілька рекомендацій:

а) Молодші школярі повинні зустрічатися з різними трикутниками. Це сприятиме правильному формуванню уявлень про трикутник та підготує учнів до вивчення його різних видів у 5 класі.

б) Розглядаючи різні моделі, діти повинні вчитися самостійно відтворювати геометричні образи в уяві, на папері.

а) В початкових класах слід використовувати вправи на: виділення знайомих фігур серед інших; порівняння фігур; конструювання фігур.

Ознайомлюючись із чотирикутниками діти мають виділяти серед них прямокутники і окремий від прямокутника – квадрат. Для цього учням пропонується серед деякої кількості чотирикутників вибрати такі, в яких кути прямі. Щоб переконати дітей у тому, що тільки прямокутник може мати всі кути прямі, класовод може запропонувати вправу: Закінчіть фігуру так, щоб вийшов трикутник з усіма прямими кутами. (Після численних спроб діти з’ясовують, що зробити цього не можна). Закінчіть фігуру, щоб дістати п’ятикутник або шестикутник, у якого б усі кути були прямі. (Зробити це теж неможливо). Звідси роблять висновок, що тільки чотирикутник може мати всі кути прямі. І цей чотирикутник називається прямокутником. Варто звернути увагу дітей на форму навколишніх предметів (або їх частин), і знайти серед них такі, що мають форму прямокутника: зошит, книжка, класна дошка, парта тощо.

У процесі вимірювання сторін прямокутника діти встановлюють, що його протилежні сторони рівні. На цьому етапі їх слід ознайомити із поняттям квадрата, яке визначається як прямокутник, у якого всі сторони рівні (або рівносторонній прямокутник).

Уявлення про фігури у дітей закріплюється під час вивчення цілого ряду вправ. Вправи різняться рівнем складності, розв’язування кожної потребує відповідного виду мислительної діяльності: репродуктивної, частково – пошукової або творчої. Під час їх використання до кожного учня слід застосовувати диференційований підхід.

Як відомо, дуже ефективним засобом навчання є гра, в процесі якої діти невимушено, мимовільно, з підвищеною активністю засвоюють нові знання. Дуже цікавою є старовинна гра «Танграм», в якій діти можуть складати найрізноманітніші малюнки за зразками, або придумувати їх самі.

У 3 класі вводяться означення периметра многокутника. Як і довжину ламаної лінії, периметри многокутників знаходять в результаті вимірювання довжин їх сторін з наступним додаванням здобутих результатів.

Після введення буквених позначень многокутників учнів слід ознайомити із різними способами обчислення периметра. Якщо довжину прямокутника позначити буквою а, а ширину – буквою в, то ці способи можна записати так: а + в + а + в, а + а + в + в, а · 2 + в · 2, (а + в) · 2. Останній спосіб є найзручнішим, але учні повинні бути знайомі з усіма.

У 4 класі учні знайомляться з поняттям площі, і мають навчитися знаходити площу прямокутника.

ІІ. 5 Формування уявлень про коло і круг

При введенні поняття коло і круга можна йти двома шляхами: а) розглянути спочатку коло, як особливий вид кривої лінії, а потім ввести круг, як фігуру, яку обмежує коло; б) розглянути круг, виходячи з відомого дітям поняття «кружечок», а коло ввести як лінію, яка обмежує круг. У зв’язку з тим, що кружечки, вирізані з паперу потрібні для проведення предметної лічби вже з перших уроків математики, перевагу треба надати другому шляху. Вивішавши на дошці наочність, вчитель повідомляє учням, що на малюнку зображено круг. Лінія, яка є межею круга, називається колом. Коло будують за допомогою циркуля. Точка О, в якій міститься голка циркуля, - центр кола. Відрізок ОА – радіус кола.

З метою уточнення уявлень про коло і круг корисно розглянути вправи виду:

знайдіть точки, що належать кругу;

назвіть точки, що належать колу;

назвіть точки, що не належать кругу;

назвіть точки, що належать кругу, але не належать колу.

Навчаючи дітей креслити коло за допомогою циркуля, вчитель спочатку демонструє так побудову на аркуші білого паперу, прикріпленого до дошки. При цьому він ознайомлює їх з інструкцією побудови кола за допомогою циркуля:

а) Розвити ніжку циркуля і вістря олівця на величину заданого радіуса. Для цього голку треба встановити на нульову поділку лінійку, а вістря олівця – на поділку, числове значення якої дорівнює задній величині радіуса.

б) Встановити голку в задану точку. Для цього правою рукою треба тримати олівець, а пальцем лівої вістря голки в задану точку.

в) коло креслять в напрямі за годинниковою стрілкою, нахиливши циркуль трохи вперед у напрямі руху олівця. Починати креслити слід від нижньої точки кола (від себе).

г) Креслити коло треба однією, правою рукою, тримаючи олівець за верхній кінець.

ґ) Лікоть правої руки спочатку відведений від корпусу, а в міру наближення вістря олівця до кінця (і початку) кола поступово наближається до нього.