г) Рассуждения ученика: Рассмотрим 9 случаев:
1) x > 0, a > 0: A правееB.
2) x > 0, a = 0: AиBсовпадают.
3) x > 0, a < 0: BправееA.
4) x = 0, a > 0: A правееB.
5) x = 0, a = 0: AиBсовпадают.
6) x = 0, a < 0: BправееA.
7) x < 0, a > 0: A правееB.
8) x < 0, a = 0: AиBсовпадают.
9) x < 0, a < 0: BправееA.
Анализ ошибки:опять же, от x ничего не зависит. Координаты отличаются на a, поэтому все зависит лишь от a. Если a – положительное, то точка Bполучается из A при помощи сдвига вправо на a единиц, если a = 0, то точки совпадают, если a– отрицательное, то делаем сдвиг влево. Пояснения к подобной ошибке были написаны выше в пункте 1).
Задача 2–6. Запишите без знака модуля выражение
, если a– отрицательное число?Рассуждения ученика:
= a.Анализ ошибки: Поскольку в данном случае –а > 0, верный ответ: –а. Ошибку спровоцировал нечастый в математике случай синонимии. Знак "–" может выполнять три разные функции: 1) признака отрицательности числа (–2, –5, –2003 и др.) ; 2) символа операции вычитания (a–b и др.); 3) символа операции перемены знака (–a и др.). Ученик в данном случае принял операцию перемены знака за символ отрицательности, не приняв в расчет, что эту роль знак минус может играть только перед числом, а не перед выражением. Хорошо отражает операцию смены знака соответствующая функция на калькуляторе (+/–). Так как большинству школьников он доступен, то есть возможность привести пример, с которым ребенок может непосредственно поработать и лучше понять суть операции.
§3. Общие рекомендации по проверке работ
учеников 8 класса ВЗМШ.
В данном параграфе мы постараемся дать общие рекомендации по написанию указаний к наиболее часто встречающимся видам ошибок.
Опираясь на анализ работ учеников 8 класса заочной школы ВЗМШ, проведенный во втором параграфе, можно выделить следующие группы типичных ошибок:
1) Необоснованное обобщение.
В общем случае ошибку этого вида можно охарактеризовать следующим образом. Имеется класс объектов. Ученик проверил, что некоторые из них обладают определенным свойством, и на этом основании утверждает, что этим свойством обладают все объекты данного класса. Наша задача – дать такие указания, которые бы убедили ученика в необходимости доказательства данного свойства для каждого объекта этого класса. При решении данной проблемы возникает два случая.
а) Утверждение, полученное при обобщении, неверно. Тогда достаточно привести контрпример, опровергающий доказательство ученика. Подобные ошибки рассмотрены в §2: задачи 2–6 (Комбинаторика) и 2 (Целые числа, §3).
б) Утверждение, полученное при обобщении, верно. Это более сложная ситуация. Контрпримера нет. Голословное требование доказать утверждение, справедливость которого интуитивно ясна, зачастую кажется ученику неубедительным. Чтобы подкрепить его, необходимо наглядно показать ученику, что в иной ситуации его действия могли бы привести к неверному результату. Для этого нужно подобрать соответствующий пример как можно более похожей задачи (лучше просто поменять условия в данной задаче). Примеры подобных ошибок и соответствующие комментарии к ним рассмотрены в §2: задачи 3–5 (Комбинаторика), 3 (Целые числа, §2) и 3 (Целые числа, §3).
С другой стороны, существуют ситуации, когда рассуждения, по форме проведенные учеником только для некоторых конкретных примеров, по сути проходят и для общего случая. Тогда не стоит заострять внимание ученика на строгости доказательства, тем более, что часть восьмиклассников еще не готова перейти на такой уровень строгости. Для этого требуется время и соответствующие задачи, в которых действия в общем случае не так очевидны.
2) Ошибки при использовании аналогии.
а)При изучении новых понятий мы пытаемся встроить их в уже имеющуюся систему знаний. При этом происходит поиск «схожих» с данным понятием структур и автоматическое присваивание понятию тех или иных свойств. К примеру, покоординатное сложение векторов определяется с помощью сложения чисел. Таким образом происходит некий перенос уже изученного материла на новый, что безусловно сокращает время и придает знаниям более системный вид. С другой стороны, раз появляется новое понятие, значит у него есть что-то новое, свойственное только ему. Очень часто у школьников аналогия переходит в отождествление, они не чувствуют разницу между новым и уже изученным понятием. К примеру, операции объединения множеств и сложения чисел имеют общую природу, но при объединении важно то, из каких элементов состоит множество, а при сложении – нас уже будет интересовать лишь количественная сторона. Ученики часто этой разницы не замечают. Данная ошибка разобрана в §2, задача 1–7 (Комбинаторика). Задача проверяющего – показать эту разницу ученику. Сделать это можно при помощи графических иллюстраций, хорошо подобранных примеров, тех же самых аналогий.
б) Синонимия. Иногда в математике одним и тем же символом обозначаются различные понятия. Такое явление называют синонимией. Определить значение данного символа помогают объекты, вместе с которыми он применяется. Скажем, если мы говорим про отрезки и пишем
, то в данном случае – это конгруэнция. Если же мы работаем с группами, то символ будет обозначать изоморфизм групп. В математике много таких символов, но их значение однозначно определяются «средой» их применения. Существует такие примеры и в школьном курсе математики. Например, знак «–» имеет три значения (см. задачу 2–6, §2, Метод координат на плоскости).В решениях школьников встречаются ситуации, когда они неверно определяют значение данного символа. В этом случае: 1) указывается, что символ употреблен не в том значении; 2) приводятся все значения данного символа, а также ситуации, в которых он эти значения принимает.
в) Подмена теоремы обратным к ней утверждением. Ошибки данного типа возникают в основном из-за того, что формулировки теоремы и обратного ей утверждений похожи. Действительно: если прямая теорема имеет структуру AÞB, то обратная – BÞA. Ученики как правило обращают внимание лишь на содержание A и B. Поэтому они отождествляют эти два утверждения. Примером может служить всем известная теорема Пифагора. Очень часто ученики ссылаются на нее, используя на самом деле обратную теорему. Все бы было хорошо, если бы у всех теорем обратные к ним утверждения были также верными. Но это на так. Поэтому необходимо требовать доказательства обратного к теореме утверждения. Как и при обобщении возникают два случая: обратное утверждение неверное; обратное утверждение верное. В первом случае достаточно привести контрпример. Во втором – необходимо подобрать схожее с данным утверждение, обратное к которому было бы неверным. Примеры ошибок данного вида приведены в §2: задачи 3-6 и 3-8а (Комбинаторика).
3) Стереотипы. При неоднократном выполнении одних и тех же операций формируется набор действий, который с некоторого момента начинает применяться в стандартных ситуациях уже бессознательно. С одной стороны, это экономит силы и время. С другой, если не следить за границами применения стереотипа, может случиться, что он будет использован некорректно, как это случилось, например, в задачах 1-7 и 3-8а (Комбинаторика), разобранных в §2. В такой ситуации, кроме всего прочего, бывает полезно объяснить ученику психологическую природу его ошибки.
Литература
1. Информация, с сайта ВЗМШ: www.vzms.director.ru.
2. Общая психология: Курс лекций для первой ступени педагогического образования / Сост. Е.И.Рогов. – М.: Гуманит. изд. центр ВЛАДОС, 1998.
3. Работы учащихся Кировского отделения ВЗМШ.
4. Повышение эффективности обучения математике в школе: Кн. для учителя: Из опыта работы./ Сост. Г. Д. Глейзер. – М.: Просвещение, 1989.
5.В.М. Брадис, В.А. Минковский, А.К. Харчева. Ошибки в математических рассуждениях. М., 1959.
6. Поучительные задачи: методические разработки для учащихся ВЗМШ.
7. Методика преподавания математики в средней школе: Общая методика / А. Я. Блох, Е. С. Канин, Н. Г. Килина и др.; Сост. Р. С. Черкасов, А. А. Столяр. – М., Просвещение, 1985.
8. Введение в комбинаторику: методические разработки для учащихся ВЗМШ АПН СССР при МГУ (В.Л. Гутенмахер, Н.Б. Васильев – М.: изд. АПН СССР, 40 с.).
9. Целые числа: учебные задания для учащихся заочной математической школы при ЛГУ./ Сост.: Б.М. Беккер, В.М. Гольховой.
10. Метод координат. Часть 1, глава 1. Координаты на прямой. М., 1997. Пособие для учащихся ВЗМШ. Составлено на основе книги И.М. Гельфанда, Е.Г. Глаголевой и А.А. Кириллова “Метод координат” (изд. “Наука”) с использованием методических материалов ВЗМШ./ Сост.: Е.Г. Глаголева, Л.Г. Серебренникова при участии Р.Н. Соловьева и Н.Ю. Вайсман.
11. Гордин Р.К. Геометрия. Планиметрия. 7 – 9 классы: Пособие для учащихся – М.: Дрофа, 2001.