Смекни!
smekni.com

Активізація пізнавальної діяльності учнів в процесі навчання математики (стр. 7 из 21)

Прояв активності та самостійності учня в проблемній ситуації можливий на різних рівнях активізації пізнавальної діяльності, а саме:

1. Вивчення та розв‘язання проблеми за вимогою вчителя.

2. Вивчення та розв‘язання проблеми, завдяки виникненню здивування, бажання подолати протиріччя, які виникають.

3. Вивчення та розв‘язання проблеми, яка зацікавлює та потребує уважної роботи.

4. Пізнавальний інтерес до роботи з проблемою.

Протиріччя, які виникають на певних етапах роботи з математичними задачами, служать джерелами проблемних ситуацій в процесі вивчення математики. З цього приводу, учбові проблемні ситуації поділяються на [60]:

· пов‘язані з перекладом реальних задач на мову математики;

· пов‘язані з математичним формулюванням задач;

· пов‘язані з перекладом математичного результату на мову, на якій була сформульована задача.

З усіма відміченими проблемами учень зустрічається при роботі з математичними задачами фінансового змісту. Тому робота з такими задачами може бути побудована на елементах проблемного підходу. Наприклад, робота над задачею у дев’ятому класі при повторенні теми “Функції” може бути проведена так.

Задача. Заповнити таблицю 1.2 та побудувати графіки податкових надходжень зведеного бюджету з кожного виду податків.

Запитання: Чи достатньо даних наведених в таблиці для виконання завдання?

Відповідь: Так, але для більшої точності графіків потрібно заповнити порожні місця в таблиці.

Таблиця 1.2

Структура податкових надходжень зведеного бюджету, %

Рік Податкові надходження Прибутковий податок з громадян Податок на прибуток підприємств Податок на додану вартість Акцизний збір Інші податки
1995 100 12,3 37,7 35,1 3,2 11,7
1996 100 ? 32 36,4 3,7 12,8
1997 100 15,3 26,5 ? 5,4 17,4
1998 100 16,3 ? 31,4 5,4 21,6
1999 100 17,8 24,6 33,8 ? 16,7
2000 100 ? 24,4 34,5 7,1 17,1

Запитання: Який основний принцип покладено в систему податкових надходжень, що описані в таблиці?

Відповідь: Загальна кількість податкових надходжень за рік повинна становити 100 %.

Запитання: За допомогою яких математичних дій та операцій можливе відшукання даних, яких не вистачає в таблиці?

Відповідь: Для цього потрібно, щоб сума чисел, які записані в рядку, дорівнювала 100. Тому використовується додавання та віднімання величин.

Учні самостійно заповнюють порожні клітинки таблиці.

Запитання: Яку залежність між заданими величинами треба використати, щоб отримати функціональну залежність?

Відповідь: Величина будь-якого виду податку залежить від року, в якому вона була отримана. Тому рік – незалежна величина, а кількість відсотків, що припадає на даний вид податку, – величина залежна.

Запитання: Яким чином можливе відображення цієї залежності на графіку?

Відповідь: За х позначаємо рік, в якому обчислювався податок, а за у – величину відсотків даного виду податку. Відобразимо наведені данні на координатній площині у вигляді точок з координатами (х, у), після чого з’єднуємо отримані точки плавною лінією.

Учні діляться на 5 груп, і кожна група будує відповідний графік.

Після виконання завдання обов’язково треба провести аналіз отриманих даних, а також поставити додаткове завдання - спробувати знайти математичну функцію, яка має схожий графік.

Подальша робота полягає в: аналізі отриманих графіків як з математичної точки зору, так і з фінансової; знаходженні зв’язку математичних властивостей отриманих графіків з фінансовими величинами.

Використання задач з не сформульованим запитанням, з недостачею даних, з зайвими даними, з декількома розв‘язками, задач на доведення, на логічне міркування приводить до створення проблемної ситуації в навчанні. Завдяки таким задачам, які ставлять учнів у ситуації, характерні для життєвої практики, відбувається актуалізація досвіду, який мають учні, та знань фінансових операцій. Працюючи з математичними задачами фінансового змісту, вчитель має надавати додаткову інформацію учням щодо тексту задачі або її відповіді.

Практика роботи з математичними задачами фінансового змісту показує, що проблемна ситуація в процесі їх розв’язування виникає, коли:

· завдання містить в собі термінологію, яка не розглядалась раніше та не було виведено зв‘язку з іншими фінансово-математичними операціями;

· умова задачі містить актуальну проблему суспільства, але не вистачає даних, які б зв‘язали засвоєний раніше матеріал з описаною ситуацією;

· відбувається аналіз фактів дійсності, співставлення життєвих уявлень та наукових понять, переклад побутової мови на мову науки;

· висуваються гіпотези розв‘язання, робляться висновки, а далі відбувається дослідна перевірка;

· задача подається в незвичній для учнів формі (наприклад, містить данні в таблиці, у вигляді діаграм тощо).

Для досягнення активізації пізнавальної діяльності в процесі роботи над задачею потрібно підвищувати пізнавальний інтерес дитини. Це можливо зробити шляхом створення проблемних ситуацій. Головна мета їх використання – підняти рівень засвоєння понять; навчити системі розумових дій для розв’язання творчих нестандартних задач та проблем створених життям.

Пізнавальна активність та самостійність школярів збільшується завдяки різноманітності елементів навчального процесу. Цього вимагає і модернізація уроку.

Введення проблемного методу в навчання, як стверджує М.І. Махмутов [40], можливе за умови , коли виділяються такі структурні елементи уроку:

· актуалізація раніше засвоєних знань, вмінь та навичок;

· створення проблемних ситуацій та постановка проблеми;

· розумовий пошук та розв‘язання проблеми (висування та доведення гіпотез);

· перевірка розв‘язку проблеми.

При цьому зазначається, що структура проблемного уроку, або уроку, що містить проблемний підхід, може значно варіюватись. В кожному окремому випадку вона визначається логікою учбового процесу, етапами творчої діяльності та рівнем проблемності.

Модернізація уроку, в ході якого розв’язуються математичні задачі фінансового змісту, відбувається завдяки врахуванню особливостей роботи над цим видом задач.

Важливе значення для активізації пізнавальної діяльності учнів, підвищення інтересу до математики та формування пізнавальної самостійності має і правильна організація самостійної роботи учнів. Завдяки їй можливе підвищення свідомості та міцності знань учнів при навчанні математики, а також формування глибини та свідомості знань, вмінь та навичок, розвиток пізнавальних здібностей. Це і спостережливість, допитливість, логічне мислення, творча активність тощо. Глибоке засвоєння знань та їх усвідомлення можливо лише в процесі самостійної роботи. Тут учень знаходить нові зв‘язки між отриманими знаннями, застосовує їх у нових умовах, пізнає раніше невивчені сторони явищ та поповнює свої знання.

Самостійна робота присутня на всіх етапах навчання. Це позитивне явище дає можливість для досягнення головної мети навчання – формування всебічно розвиненої особистості, готової до життя в сьогоднішніх умовах.

В залежності від різних основ, які покладені в класифікацію, самостійні роботи поділяють за принципом дидактичного призначення самостійних робіт у навчанні (самостійні роботи, які використовуються для отримання нових знань; самостійні роботи для використання нових знань, на утворення вмінь та навичок; самостійні роботи з метою перевірки знань та їх повторення) [19]; за джерелом знань (робота з підручником; робота з довідковою літературою; учбові вправи; твори та описи; лабораторні роботи; роботи, які пов‘язані з використанням карт, схем, малюнків, графіків тощо) [51]; за способами управління викладачем навчальною діяльністю учнів (роботи під керівництвом вчителя; робота з посібниками; практичні роботи; повністю самостійні роботи; творчі роботи).

У всіх зазначених класифікаціях, на жаль, не враховується просування до вищого рівня розумової діяльності,перехід до вищого рівня активності та самостійності учнів. Виходячи зі структури пізнавальної діяльності та єдності її процесуальної сторони з логіко-змістовною, П.І. Підкасистий [43] запропонував таку типологію самостійних робіт:

· відтворюючі самостійні роботи за зразком;

· реконструктивно-варіативні самостійні роботи;

· евристичні самостійні роботи;

· творчі самостійні роботи.

Ця типологія має велике значення для активізації пізнавальної діяльності учнів, та ми її враховували при розв‘язуванні математичних задач фінансового змісту. Розглянемо детальніше ці типи.

При виконанні самостійних робіт першого типу, самостійність знаходиться повністю в рамках відтворюючої діяльності. Учень діє за зразком, схожою ситуацією чи детальним інструктажем. Коли учбовий матеріал усвідомлений учнем, він легко відтворюється ним без певних змін. При виконанні самостійної роботи, учень дізнається про деякий факт, явище, згадує зразок діяльності для розв‘язування запропонованої задачі та розв‘язує її. Покажемо це на прикладі розв’язання наступної задачі:

Задача. Ціна реалізації продукції, яка включає податок на додану вартість обчислюється за формулою

Ц = ( С + П ) × 1,2 (1.1)

де Ц –ціна реалізації, С – собівартість товару, П – прибуток. Знайти прибуток, який планує отримати підприємство від реалізації 100 автомобілів за ціною 5 000 у.о., якщо собівартість одного автомобіля становить 3 500 у.о.