Мал.2.14.Графік страхових відшкодувань у випадку умовної франшизи
2. У випадку безумовної франшизи страхове відшкодування завжди дорівнює різниці між збитками та безумовною франшизою, тобто
.(мал.2.15)Мал.2.15.Графік страхових відшкодувань у випадку безумовної франшизи
У отриманої функції область визначення та область значення лише додатні числа, тому графік функції розташований лише в перший чверті координатної площини (мал.2.15.)
Проводячи порівняльний аналіз отриманих графіків, треба звернути увагу учнів на відмінності, які виникли з особливостей кожного виду франшизи.
Надалі, учням пропонується самостійно задати числові характеристики для різних видів страхування та побудувати графіки функціональної залежності між збитками і страховим відшкодуванням за цими умовами.
Для узагальнення дій різних видів страхування учням можуть бути запропоновані задачі, де відбувається страхування за декількома видами.
Задача 5. Обчислити страхові відшкодування за викрадений автомобіль вартістю 8200 грн., якщо він був застрахований у трьох різних компаніях на умовах: в першій - на суму 6 500 грн. за безумовною франшизою у розмірі 5 %, в другій - на суму 8 000 грн. за безумовною франшизою у розмірі 3 %, а в третій - на суму 8 100 грн. за умовною франшизою у розмірі 8 %.
В цьому прикладі важливо звернути увагу учнів на те, що у випадку страхування в декількох місцях франшиза обчислюється від відсоткової вартості застрахованого об’єкта, яка попадає на даний договір страхування. Тому обчислення будуть відбуватись за такою схемою:
1. Загальна страхова сума становить: 6 500+8 000+8 100 = 22 600 (грн.)
2. Відповідно частки страховиків від загальної суми становлять:
(6 500 : 22 600) × 100 » 28,76 % – для першого,
(8 000 : 22 600) × 100 » 35,40 % – для другого,
(8 100 : 22 600) × 100 » 85,84 % – для третього.
3. Страхові виплати з врахуванням франшизи становлять:
8 200 × (0,2876 - 0,05) = 1 948,32 (грн.) – для першого,
8 200 × (0,3540 - 0,03) = 2 656,8 (грн.) - для другого,
8 200 × (0,8584 - 0,08) = 6 382,88 (грн.) - для третього.
Відповідь: 1 948,32 грн., 2 656,8 грн., 6 382,88 грн.
Робота з такими даними показує учням особливості, які відбуваються при розрахунках у випадку одночасного страхування одного об’єкта в декількох місцях на різних умовах.
Таким чином, розв’язуючи математичні задачі на страхування учні усвідомлюють такі фінансові поняття, як:
· страхове відшкодування - страхова виплата, яка здійснюється страховиком у межах страхової суми за договорами майнового страхування і страхування відповідальності при настанні страхового випадку;
· страхова сума - грошова сума, в межах якої страховик відповідно до умов страхування, зобов'язаний провести виплату при настанні страхового випадку;
· страховий внесок – сума, яка сплачується страхувальником за страхування;
· страховий тариф - ставка страхового внеску з одиниці страхової суми за визначений період страхування або відношення страхового внеску до страхової суми об’єкту страхування;
· вартісна оцінка об’єкта страхування;
· фактична сума збитків;
· умовна та безумовна франшиза;
· інші.
Особливості роботи з задачами на страхування в курсі математики основної школи полягають у трактуванні різних страхових термінів в ході розв’язування задач. Тоді показується математична залежність в страховій системі. Учні вчаться застосовувати математичні знання у звичайних страхових ситуаціях, які відбуваються в повсякденному житті. Важливість страхової справи в умовах ринкової економіки підкреслюється та розкривається змістом математичних задач на страхування, які ми пропонуємо ввести в курс основної школи (додаток Д). Через систему задач на страхування в курсі математики основної школи відбувається ознайомлення учнів з різними страховими поняттями (додаток Є). Задачі на страхування в курсі математики основної школи відображають можливий соціально-фінансовий напрямок захисту власних інтересів кожного громадянина українського суспільства.
2.6. Організація, проведення та аналіз результатів педагогічного експерименту
Основні теоретичні положення активізації пізнавальної діяльності при роботі з математичними задачами фінансового змісту, які висвітлені в роботі, були реалізовані під час проведення експериментального дослідження у шевченківській загальноосвітній школі. Для уточнення активізації пізнавальної діяльності було використано дослідження пізнавального інтересу учнів 9-А класу (14 учнів), його формування та розвиток, що виступає головним показником в процесі пізнавальної діяльності учнів.
Робота проводилась з вересня 2006 по травень 2007 р.
Мета експерименту полягала в перевірці робочої гіпотези дослідження. Її перевірка вимагала, в першу чергу, виявлення ефективності впливу запропонованої системи задач на активізацію навчання та формування пізнавального інтересу до математики. В ході експерименту з‘ясовувались доступність та ефективність системи математичних задач фінансового змісту, яка спрямована на формування та розвиток пізнавального інтересу до математики, можливість використання різних прийомів і методів роботи з ними, роль запропонованих задач в процесі навчання математики та в процесі розширення фінансово-математичної обізнаності учнів.
Під час розв‘язання проблеми та перевірки гіпотези розв‘язувались як основні, так і часткові завдання. Зокрема:
1. З‘ясувати спрямованість інтересів учнів 9 класів до учбових предметів та місце математики серед них.
2. З‘ясувати особливості пізнавального інтересу до математичних задач фінансового змісту.
3. Визначити методи та засоби роботи з математичними задачами фінансового змісту, що сприяють формуванню та розвитку пізнавального інтересу учнів.
Дослідження проводилось протягом трьох етапів.
На першому етапі була сформульована робоча гіпотеза, визначались конкретні задачі дослідження та розроблявся план дослідної роботи. На початковому етапі дослідження особлива увага приділялась розгляду та вивченню літератури, аналізу психологічних, педагогічних та методичних праць з даної проблеми та розробці тестів, метою яких було виявлення пізнавального інтересу учнів до математичних задач фінансового змісту та математики в цілому.
На другому етапі проводився пошуковий педагогічний експеримент. В ході експерименту здійснювалась цілеспрямована робота з активізації пізнавальної діяльності учнів при розв’язуванні математичних задач фінансового змісту на уроках математики. В процесі відстежувались зміни у ставленнях учнів до математики та їх успішності. За допомогою різних методик досліджувались рівні пізнавального інтересу учнів.
На третьому етапі за допомогою тестів та анкет проводилось опитування учнів з метою порівняння даних в експериментальних та контрольних класах. Метою опитування було виявлення впливу спеціально підібраної системи математичних задач фінансового змісту та методики її використання на розвиток пізнавального інтересу учнів до математики.
Остаточна робота полягала в обробці, перевірці та уточненні даних, отриманих у процесі експерименту, формулюванні висновків.
Спостереження на уроках математики проводились за планом, який включав: аналіз використання математичних задач фінансового змісту та методів роботи з ними; спостереження за уважністю, самостійністю в теоретичній та практичній діяльності учнів; виявлення інтересу до вивчення математичних основ та, особливо, до роботи із запропонованими задачами.
У процесі спостереження зверталась увага на питання, які ставлять учні до вчителів та товаришів, відповіді за власним бажанням, зацікавленість у роботі з математичними задачами фінансового змісту, прагнення зрозуміти життєве значення та застосування даних задач та прагнення поповнювати свої знання самостійно шляхом розв‘язування задач з додаткових джерел.
На початку експерименту за допомогою тестів було з‘ясоване питання про наявність та предметну спрямованість інтересів учнів, а також рівень їх сформованості.
Перший тест включав у себе завдання, де крім вибору відповіді на питання, в деяких випадках, потрібно ще й обґрунтувати свій вибір. (див. Додаток Ж.)
Серед професій, які вказували учні у відповідях на перше питання, зустрічалися такі як бухгалтер, фінансист, економіст, менеджер. Це свідчить про зацікавленість учнів у фінансових операціях та підтверджує ідею необхідності збільшення фінансової освіти в школі.
У відповідях на друге питання, на жаль мало хто з учнів знайшов реальне застосування власних математичних знань. Багато відповідей вказували на те, що учні не знаходять життєвого значення для математики: для допомоги виконувати домашні завдання молодшому брату, для отримання гарної оцінки тощо. Аналіз відповідей на наступні питання тесту подано у таблиці 2.21.
Таблиця 2.21
Аналіз тесту на виявлення рівня пізнавального інтересу до математичних задач фінансового змісту та рівня знань фінансово-математичних операцій і законів
Запитання | Так | Ні | Не знаю |
Чи мрієте Ви стати багатими? | 98 % | 0 % | 2 % |
Чи можливо з грошей робити гроші? | 86 % | 3 % | 11 % |
Чи бажаєте дізнатися більше про фінансово-математичні закони? | 65 % | 35 % | - |
Чи потрібно вивчати фінансові задачі та закони в школі? | 95 % | 5 % | - |
Чи зустрічаєтесь Ви з фінансовими проблемами в житті? | 78 % | 22 % | - |
Чи подобаються Вам фінансово-математичні розрахунки? | 16 % | 1 % | 83 % |
Чи допоможе, на Ваш погляд, вивчення фінансових особливостей в школі розбагатіти кожному громадянину країни? | 86 % | 5 % | 9 % |
Чи є в нашій країні економічна нестабільність? | 64 % | 29 % | 7 % |
Данні таблиці показують, що у більшості учнів виникає інтерес до фінансової тематики, але програмою основної школи не передбачено ознайомлення учнів з цим напрямком життя. Тому для забезпечення первинних знань фінансових операцій, термінів, законів, ознайомлення з елементарними поняттями фінансового світу доцільно до задач, які розглядаються на уроках математики, включити математичні задачі фінансового змісту.