Выполнение действий контроля и оценки предполагает обращение внимания школьника на содержание собственных действий, на рассмотрение их основ с точки зрения соответствия требуемому задачей результату.
Однако такой структура учебной деятельности становится лишь на определенном этапе своего формирования. Наблюдения показывают, что в самом начале своего формирования учебная деятельность школьника далека от этой формы. Иногда в ней ясно выделена для ребенка только оценка, в некоторых случаях представлено и действие контроля. Это зависит от конкретного содержания усваиваемого материала и организации процесса обучения.
Итак, мы рассмотрели структуру и содержание учебной деятельности. В заключении добавим, что знания человека находятся в единстве с его мыслительными действиями (абстрагированием, обобщением и т.д.).Мышление школьников хотя и имеет некоторые общие черты, однако не тождественно мышлению ученых, деятелей искусства, теоретиков морали и права. Школьники не создают понятий, образов, ценностей и норм общественной морали, а присваивают их в процессе учебной деятельности. Но в процессе ее выполнения школьники осуществляют мыслительные действия, адекватные тем, посредством которых исторически вырабатывались эти продукты духовной культуры.
В своей учебной деятельности школьники воспроизводят реальный процесс создания людьми понятий, образов, ценностей и норм. Как и другие виды воспроизводящей деятельности детей, их учебная деятельность является одним из путей реализации единства исторического и логического в развитии человеческой культуры.
В процессе систематического выполнения школьниками учебной деятельности у них, наряду с усвоением теоретических знаний, развивается теоретическое сознание и мышление. В младшем школьном возрасте учебная деятельность является ведущей и главной среди других видов деятельности, выполняемых детьми. В ходе становления у младших школьников учебной деятельности у них формируется и развивается важное психологическое новообразование данного возраста- основа теоретического сознания и мышления, и связанные с ними психические способности (рефлексии, анализа, планирования).
1.2 ОСОБЕННОСТИ ОБУЧЕНИЯ МАТЕМАТИКЕ ПО СИСТЕМЕ Д.Б.ЭЛЬКОНИНА- В.В.ДАВЫДОВА.
Мышление школьников в процессе учебной деятельности имеет нечто общее с мышлением ученых, излагающих результаты своих исследований посредством содержательных абстрактных, обобщенных и теоретических понятий, функционирующих в процессе восхождения от абстрактного к конкретному. В связи с этим учебная деятельность школьников в развивающем аспекте строится в соответствии со способами изложения научных знаний со способами восхождения от абстрактного к конкретному.
В.В. Давыдов считает:” При разработке проблемы развивающего обучения необходимо опираться на следующее положение: основой развивающего обучения служит его содержание, от которого производны методы организации обучения”.(8,С.145) Это положение характерно также для воззрений Л.С.Выготского и Д.Б.Эльконина. Развивающий характер учебной деятельности, как ведущей деятельности в младшем школьном возрасте, связан с тем, что ее содержанием являются теоретические знания.
При традиционном обучении главное внимание педагога направлено не на процесс учебной деятельности ребенка, а на ее результат. Поэтому главным результатом считалась прочность усвоения определенной суммы знаний и фактов. При развивающем обучении ставится следующая задача: не только обеспечить усвоение ребенком требуемых обществом научных знаний, но и добиться, чтобы на каждом уроке ученик овладевал, а затем с возрастающей степенью самостоятельности использовал сами способы добывания знаний.
Другим признаком развивающего обучения является его интенсивность. При любом обучении ребенок развивается (даже при зубрежке), но при развивающем обучении сдвиги в развитии личности более значительны.
Итак, “развивающее обучение- это такое обучение, при котором формы, методы, приемы, средства преподавания направлены не только на усвоение знаний, умений, навыков, но и на интенсивное всестороннее развитие личности учащегося, овладение им способами добывания знаний, развитие его творческой активности”.(11,С.11)
Стратегия развивающего обучения состоит в том, что, учитывая определенные уровни созревания психики, мы не должны дожидаться, пока психические функции полностью созреют, а соответствующими заданиями несколько упреждает их и тем самым ускоряет качественный скачок на новый уровень развития. Например, младшим школьникам присуща в большой степени конкретность мышления, а мы соответствующими заданиями на развитие абстрактного мышления ускорим наступление стадии абстрактных операций, не дожидаясь спонтанного их формирования. Это в свою очередь будет способствовать общему развитию ребенка.
В последнее время часто обсуждается вопрос о недостатках традиционной программы преподавания математики в школе. Эта программа по мнению многих педагогов и психологов не содержит основных принципов и понятий современной математической науки, не обеспечивает должного развития математического мышления учащихся, не обладает преемственностью и цельностью по отношению к начальной, высшей и средней школе. При традиционном обучении на первый план авторы программ предпочитают выдвигать не теоретико-познавательные и логико-психологические моменты, а собственно математическую сторону дела- вопросы связи самого математического материала.
Во многих странах и международных организациях ведется работа по усовершенствованию учебных программ. Выдвигаются различные предложения о путях рационального изложения современных математических понятий в школьных курсах. Некоторые предложения представляют, несомненно, большой теоретический и практический интерес. Среди них программа обучения математике предложенная Д.Б.Элькониным и В.В.Давыдовым. Рассмотрим эту систему подробнее.
Основная задача изучения математики в школе состоит в том, чтобы привести учащихся “к возможно более ясному пониманию концепции действительного числа”. (8,С.179) Основы этой концепции должны усваиваться детьми уже в начальной школе. Это означает, что детям с самого начала должно быть раскрыто общее основание всех видов действительного числа. Таким основанием является усвоение детьми математического понятия величины. Знакомство детей с многообразием чисел, рассматриваемых в концепции действительного числа, является важным путем конкретизации понятия величины.
“Усвоение детьми основной идеи концепции действительного числа должно начинаться с овладения ими понятием величины и с изучения ее общих свойств.”(8,С.179) Так считают составители этой программы.
В основе экспериментального курса обучения математике (так же как и в основе принятого курса) положена концепция действительного числа. Однако в отличие от обычной программы в экспериментальном обучении предусмотрен такой вводный раздел, при усвоении которого дети специально изучают генетически исходное основание последовательного выведения всех видов действительного числа, а именно изучают понятие величины.
Этот подход к проблеме построения экспериментального учебного предмета по математике определил следующую систему его основных учебных заданий, составленных применительно к младшим классам:
1) введение детей в сферу отношений величин- формирование у них абстрактного понятия математической величины;
2) раскрытие детям кратного отношения величин как общей формы числа- формирование у них абстрактного понятия числа и понятия основания взаимосвязи между его компонентами (число производно от кратного отношения величин);
3) последовательное введение детей в область различных частных видов чисел (в область натуральных, дробных, отрицательных чисел)- формирование у них понятий об этих числах как одном из проявлений общего кратного отношения величин при определенных конкретных условиях;
4) раскрытие детям однозначности структуры математических операций (если известны значения двух элементов операции, то по ним можно однозначно определить значение третьего элемента)- формирование у них понимания взаимосвязи элементов основных арифметических действий.
Дадим краткую характеристику содержания перечисленных учебных задач.
Так, первая задача требует от детей выделения посредством определенных предметных действий трех отношений объектов (“равно”, “больше”, “меньше”). Затем эти отношения дети фиксируют с помощью буквенных формул, что позволяет приступить к изучению свойств отношений равенства и неравенства в их “чистом виде”. Изучая условия перехода от неравенства к равенству и их свойства (например, транзитивность), дети в дальнейшем, уже после ознакомления с общей формой числа, выводят свойства числового ряда.
Содержанием второй учебной задачи является овладение детьми общей формой числа посредством определения кратного отношения величин, одна из которых выступает в качестве исходной величины, а другая- в качестве ее меры.
При постановке последующих учебных задач учитель создает такие ситуации, которые требуют от детей использования не одной, а целого ряда последовательно увеличивающихся мер, поскольку различие между мерой и измеряемым объектом становится значительным. При использовании детьми этого ряда мер возникает необходимость установить постоянное отношение размера последующей меры к предыдущей. Запись результатов измерения получает форму позиционного числа, которая в зависимости от значения постоянного отношения мер может быть отнесено к любой системе счисления, в том числе и к десятичной, если это отношение будет десятикратным. Так в первом классе вводится понятие многозначного числа.