Смекни!
smekni.com

Творческие задания и их роль в формировании познавательных интересов младших школьников на уроках русского языка и математики (стр. 15 из 19)

1. Никакой объект не предшествует сам себе.

2. Если х предшествует у, а у предшествует z, то х предшествует z .

Так с помощью двух аксиом определены системы объектов вида «х предшествует у». Например, пусть объектами х , у ... являются люди, а отношение между х и у представляет собой «х старше у». Тогда выполняются утверждения 1 и 2. Если объекты х, у, z — действительные числа, а отношение «х предшествует у» представляет собой «х меньше у», то утверждение 1 и 2 также выполняются. Утверждения (т.е. аксиомы) 1 и 2 определяют системы объектов с одним отношением.

3) Индуктивные определения характеризуются тем, что определяемый термин используется в выражении понятия, которое ему приписывается в качестве его смысла. Примером индуктивного определения является определение понятия «натуральное число»:

1. 1 — натуральное число.

2. Если n — натуральное число, то n +1 натуральное число

3. Никаких натуральных чисел, кроме указанных в пунктах 1 и 2, нет.

С помощью этого индуктивного определения получается натуральный ряд чисел: 1, 2, 3, 4... .Таков алгоритм построения натуральных чисел.

4) Остенсивные определения используются для введения терминов путем демонстрации объектов, которые этими терминами обозначают. Поэтому остенсивные определения называют еще определения путем показа. Например, таким способом определяются в начальной школе понятия равенства и неравенства.

2 · 7 > 2 · 678 – 9 < 7837 + 6 > 37Это неравенства 9 · 3 = 276 · 4 = 4 617 – 8 = 8 · 4 Это неравенства

В начальной школе при введении понятий чаще всего используются остенсивные и контекстуальные определения. Иногда встречаются определения, сочетающие контекст и показ. Примером такого определения является определение прямоугольника, приведенное в учебнике математики для II класса[12]. Здесь нарисованы (показаны) четырехугольники и приведен текст: «У этих четырехугольников все углы прямые». Под рисунком написано: «Это прямоугольники». Очень редко определения понятий даются через род и видовое отличие. Так, например, определяют умножение: «Сложение одинаковых слагаемых называется умножением».

Основными логическими приемами формирования понятий являются анализ, синтез, сравнение, абстрагирование, обобщение.

Для выделения существенных признаков необходимо абстрагироваться (отвлечься) от несущественных, которых в любом предмете очень много. Этому служит сравнение, сопоставление предметов. Для выделения ряда признаков следует произвести анализ, т.е. мысленно расчленить целый предмет на его составные части, элементы, стороны, отдельные признаки, а затем осуществить обратную операцию — синтез (мысленное объединение частей предмета, отдельных признаков, притом признаков существенных, в единое целое.

Мысленному анализу как приему, используемому при образовании понятий, часто предшествует анализ практический, т.е. разложение, расчленение предмета на его составные части. Мысленному синтезу предшествует практический сбор частей предмета в единое целое, с учетом правильного взаимного расположения частей при сборке.

Анализ — мысленное расчленение предметов на их составные части, мысленное выделение в них признаков.

Синтез — Мысленное установление сходства или различия предметов по существенным или несущественным признакам.

Абстрагирование — мысленное выделение одних признаков предмета и отвлечение от других. Часто задача состоит в выделении существенных признаков и в отвлечении от несущественных, второстепенных.

Обобщение — мысленное объединение отдельных предметов в некотором понятии.

Перечисленные выше логические приемы используются при формировании новых понятий как в научной деятельности, так и при овладении знаниями в процессе обучения.

Учитель, овладевая методикой преподавания своего предмета, должен в первую очередь организовать работу с основными опорными понятиями и законами, уметь выделить главное в обучении. Повышению теоретического уровня преподавания способствует четкое выделение основных понятий, Надо не только отрабатывать признаки основных и опорных понятий, но и органично увязывать их содержание с современностью, с практикой, иначе может возникнуть формализм в знаниях учащихся.

В целом перед учителем стоят такие задачи: добиваться от учащихся глубокого усвоения основных понятий курса, выработки цельной системы раскрытия важнейших понятий курса, выработки цельной системы раскрытия важнейших понятий школьных предметов, поэтапного расширения их объема и усложнения их структуры.

§ 2. Анализ различных методик формирования

понятий у младших школьников

В настоящее время существует несколько методик формирования понятий у младших школьников. В основе каждой методики лежат основные дидактические принципы обучения, но каждый автор вкладывает в них свое содержание.

Так, В.А. Дрозд понимает принцип научности как «отражение в начальном обучении математике определенных математических идей, позволяющее осуществит их раннюю пропедевтику», т.е. «в соответствии с этим принципом учебный материал должен излагаться в последовательности, сохраняющей связи между понятиями, темами, разделами в рамках отдельного предмета, а также межпредметные связи»[13].

В.В. Давыдов считает, что «принцип научности в традиционной дидактике понимается в узко эмпирическом значении... Подлинная реализация принципа научности обучения связана с изменением типа мышления, т.е. с переходом к формированию у детей уже с первых классов основ теоретического мышления, которое лежит в фундаменте творческого отношения человека к действительности».[14]

Существует два пути формирования понятий: индуктивный и дедуктивный. Индуктивный путь (от частного к общему) — восхождение от фактов к общим закономерностям. В традиционной системе обучения математике предпочтение отдается индуктивному пути формирования понятий. Так, В.Л. Дрозд отмечает, что «важнейшим из требований к методике введения начальных математических понятий является формирование математических понятий через рассмотрение реальных, житейских ситуаций, хорошо знакомых детям из повседневной жизни».[15] М.А. Бантова, Г.В. Бельтюкова считают, что «при ознакомлении учащихся с математическими понятиями лучше всего использовать метод беседы. Система упражнений в этом случае должна вести детей от частных фактов к общему выводу, к «открытию» той или иной закономерности, т.е. здесь целесообразна эвристическая беседа, обеспечивающая индуктивный путь рассуждения».[16] Эти же авторы выдвигают ряд требований к системе упражнений при индуктивном пути формирования понятия:

1) Система упражнений должна обеспечить наглядную основу формируемого понятия. Поэтому при выполнении упражнений важно во многих случаях использовать наглядность. При ознакомлении с математическими понятиями и закономерностями в начальных классах часто используют для этой цели операции над множествами и записи соответствующих арифметических действий.

2) Упражнения надо подбирать так, чтобы сохранялись неизменными существенные свойства, а несущественные изменялись. Кроме того, должно быть достаточное число упражнений, т.е. столько, сколько потребуется для того, чтобы каждый ученик на основе их анализа сам пришел к обобщению.

3) При знакомстве с новым материалом, который сходен с уже изученным, надо так подбирать упражнения, чтобы раскрывать новый материал в сопоставлении со сходным, выделяя существенное сходное. Раскрывая противоположные понятия, надо подбирать упражнения так, чтобы можно было использовать прием противопоставления, т.е. выделит существенное различное. Приемы сопоставления и противопоставления помогают правильному обобщению формируемого понятия, предупреждают смешение.

Таким образом, при ознакомлении учащихся с новым теоретическим материалом (вводя понятия, раскрывая свойства, связи) учитель через систему упражнений подводит детей к обобщению. Обобщение выражается в речи: ученики формулируют соответствующий вывод. Важно, чтобы ученики сами сформулировали вывод. Это покажет учителю, что они пришли к обобщению.

В последнее время большой популярностью пользуется методика В.В. Давыдова. Давыдов В.В. считает возможным открытия учащимися всеобщего содержания некоторого понятия как основы для последующего выведения его частных проявлений. Утверждается необходимость перехода от всеобщего к частному.

В.В. Давыдов считает возможным открытие учащимися всеобщего содержания некоторого понятия как основы для последующего выведения его частных проявлений. Утверждается необходимость перехода от всеобщего к частному.

В.В. Давыдов считает, что понятие у младших школьников должны формироваться дедуктивным путём. Давыдов выделяет наиболее важные условия, реализующие построения учебных предметов путём перехода от общего к частному на основе специфических учебных действий. Так, построение учебной работы на основе теоретического обобщения реализуется тогда, когда в ней учитываются следующие моменты:[17]

1) все понятия, конституирующие данный учебный предмет или его основные разделы, должны усваиваться детьми путём рассмотрения условий их происхождения, благодаря которым они становятся необходимыми (т.е. понятия не даются как готовое задание);

2) усвоение заданий общего и абстрактного характера предшествует знакомству с более частными и конкретными знаниями, последние должны быть выведены из абстрактного как из своей единой основы; это вытекает из установки на выяснение происхождения понятий и соответствует требованиям восхождения от абстрактного к конкретному;