2. Развивать вычислительные навыки, речь, мышление, память.
3. Воспитывать самостоятельность активность , трудолюбие, любовь к математике.
Оборудование: карточку ax+by>c.
Ход урока.
I. Организационное начало урока.
-Здравствуйте, садитесь, сегодня урок алгебры проведу у вас я, зовут меня Елена Федоровна
II. Сообщение темы и цели.
-Сегодня, на уроке мы познакомимся с уравнениями нового вида - «Линейными уравнениями с двумя переменными».
III. Актуализация знаний учащихся.
-Посмотрите на доску. Какие из этих уравнений вам уже знакомы?
7х2+3х+5=0 5х+9=54
4х+9у=7 9(х2+6х+2)-8=30
x2/3+y2/2=1 4(х+2)+1=х+18.
-А как называются эти уравнения?
-Правильно это линейные уравнения с одной переменной.
-А кто скажет определение линейного уравнения с одной переменной?
-Уравнение вида ах=в, в котором x- переменная, а а и в – некоторые числа , называется линейным уравнением с одной переменной.
-Откройте учебники на стр. 27 , прочитайте это определение. Повтори…
-Приведите примеры линейных уравнений с одной переменной.
-Посмотрите на доску, перед вами линейные уравнения. Давайте вспомним как они решаются.
-Откройте тетради, запишите число, классная работа, тема: «Линейные уравнения с двумя переменными.»
-Все решают уравнения в тетрадях, а Оля пойдет к доске и решит с подробным объяснением первое уравнение:
2х+6=10
(Перенесем слагаемое без х в правую часть уравнения, изменив при этом его знак на противоположный: 2х=10-6 , вычислим результат 2х=4. Разделим обе части уравнения на 2, получим х=2).
-Молодец. Садись.
-Второе уравнение пойдет решать Саша.
2(х+3)+4=х-1.
(Раскроем скобки, для этого умножим 2 на каждое слагаемое суммы (х+3), получим 2х+6+4=х-1. Перенесем слагаемые, содержащие х в левую часть уравнения, а не содержащие х – в правую часть, изменив при этом знаки на противоположные.
2х-х= -6-4-1.
Приведем подобные слагаемые : х= - 11.
- Ребята , такие уравнения вы хорошо умеете решать.
- А какие свойства применяли при решении этих уравнений? (Если в уравнении слагаемое перенести из одной части в другую, изменив его знак , то получится уравнение, равносильное данному.)
- А какое еще свойство вы применяли? (Если разделить или умножить обе части уравнения на одно и тоже отличное от нуля число, то получится уравнение равносильное данному.)
IV. Изучение нового материала.
-Ребята, а сегодня мы познакомимся с уравнениями нового вида.
-Пусть известно , что одно их двух чисел на 5 больше другого. Если первое число обозначить буквой х, а второе буквой у, то соотношение между ними можно записать в виде равенства х-у=5, содержащего 2 переменные. Такие уравнения называются уравнениями с двумя переменными или уравнениями с двумя неизвестными.
-Уравнениями с двумя переменными также являются уравнения:
5х+2у=10, -7х+у=5, х2+у2=20 , ху=12 (запись на доске).
-Из этих уравнений первые два имеют вид ах+ву=с, где а, в, с – числа. Такие уравнения называются линейными уравнениями с двумя переменными.
-Итак: Линейным уравнением с двумя переменными называется уравнение вида ах+ву=с где х и у – переменные, а, в, с, - некоторые числа .
-Откройте учебники на странице 188.Прочитайте определение про себя.
-Теперь прочитайте вслух.
-А кто из вас повторит его ?
-уравнение х-у=5, при х=8, у=3. Обращается в верное равенство 8-3=5. Говорят, что пара значений переменных х=8, у=3 является решением этого уравнения. Записываю на доске:
х-у=5, х=8, у=3
8-3=5 - верное равенство.
Определение: Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.
-Прочитайте это определение на странице 188 про себя.
-Прочитайте его вслух.
-Кто повторит? Повтори…
-А какие еще пары чисел будут являться решениями уравнения х-у=5? (х=105, у=100; х=4, у= -1,…)
-Правильно решениями этого уравнения будут являться числа, разность которых равно 5.
-Иногда пары значений переменных записывают короче: (105; 100), (4;- 1). ( Запись на доске).
-При такой записи необходимо знать, значение какой из переменных стоит на первом месте, а какой – на втором.
-в записи решений уравнения с переменными х и у на первом месте записывают значения х, а на втором – значение у.
-Уравнения с двумя переменными имеющие одни и те же решения, называют равносильными. уравнения с двумя переменными, не имеющие решений, также считают равносильными.
-Ребята, при решении линейных уравнений с одной переменной мы вспомним их свойства.
-Линейные уравнения с двумя переменными обладают такими же свойствами.
-Откройте учебники на стр. 189. Прочитайте эти свойства про себя.
-А теперь Таня , прочитай вслух. Повтори свойства.
-Рассмотрим уравнения 5х+2у=12.
-Воспользовались свойствами уравнений, выразим из этого уравнения одну переменную через другую , например у, через х. Для этого перенесем слагаемое 5х в правую часть уравнения изменив его знак.
2у= -5х+12.
-Разделим обе части этого уравнения на 2:
у= -2,5х+6
Уравнения 5х+2у=12 и
у= -2,5х+6 – равносильны.
-Пользуясь формулой у=2,5х+6, можно найти сколько угодно решений уравнения 5х+2у=12. Для этого достаточно взять произвольное х и вычислить соответствующее ему значение у.
Например: если х=2 , то у= -2,5.2+6=1.
если х=0,4 то у= -2,5*0,4+4=5.
Пары чисел (2; 1), (0,4; 5) – решение уравнения 5х+2у=12.
Это уравнение имеет бесконечно много решений.
V .Первичное закрепление.
-Что же называется линейным уравнением с двумя переменными?
-Выполним № 1092 на странице 190 устно.
-Прочитай задание.
-Является ли первое уравнение 3х-у=17 линейным? (Да).
-Почему? (Т.к. имеет вид ах+ву=с)
-А второе упражнение? (Нет).
-Почему? (Т.к. уравнение х2- 2у=5 не приводится к виду ах+ву=с, х имеет показатель степени 2).
(Далее аналогично).
-А теперь запишите № 1094.
-Читай задание .
-Как ответить на этот вопрос? (Поставить значение х и у в уравнение. Если получится верное равенство, то х и у является решением уравнения)
-Все решайте в тетрадях, а……. у доски.
х + у=6
6=6 – верное равенство.
Ответ: да.
-А какие еще числа могут быть решениями этого уравнения х+у=6. (Дающие в сумме 6: 4 и 2, 3 и 3 и т.д.).
-Запишите любые 2 решения этого уравнения.
-Не забывайте, что значение х пишется на первом месте а у – на втором месте.
Самостоятельная работа.
-А теперь выполним № 1096. запишите.
-Прочитай задание.
-Что нужно сделать, чтобы ответить на вопрос? (Подставить значения х и у в уравнение и посмотреть, получится ли верное равенство).
а) .Организация самостоятельной работы.
-Все решают в тетрадях, а к доске пойдут Лена и Оля.
-Саша проверит первые 2 пары, а Катя вторые 2 пары.
-А потом проверим.
б) Проведение самостоятельной работы.
(3; 1 ) (0; 10)
3*3+1>10 3*0+10=10.
10=10 – верное равенство 10=10 верное равенство
Ответ: является Ответ: является
(2; 4) (3; 2,5)
3*2+4=10 3*3+2.5=10
10=10 – верное равенство 11,5=10 – неверное равенство
Ответ: является Ответ: не является.
в) Проверка самостоятельной работы.
-Давайте проверим правильно ли выполнила Оля.
-У кого другой ответ?
-А Лена?
-У кого другой ответ?
-Молодцы. Садитесь.
-А теперь выполним № 1099.
-Прочитай задание.
-Что нужно сделать, чтобы выразить у через х? (Представить, что х известное число и найти у )
-Пойди к доске реши с объяснением, а все решают в тетрадях.
4х-3у=12.
(Одночлен 3у является неизвестным вычитаемым. Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность 3у=4х-12 .
Разделим обе части уравнения на 3, получим:
-Молодец. Садись.
А теперь выполним пункт б, Сережа иди к доске.
4х-3у=12.
(Одночлен 4х является неизвестным уменьшаемым, чтобы его найти, надо к разности прибавить вычитаемое: 4х=12+3у. Разделим обе части уравнения на 4 и получим:
-Правильно. Молодец. Садись .
VI. Подведение итогов.
-Какой вид имеет линейное уравнение с двумя переменными ? (ах+ву=с).
-Что называется решением линейного уравнения с двумя переменными ?
-Приведите примеры таких уравнений.
-Какими свойствами обладают уравнения с двумя переменными?
2 К тренировочным относятся задания на распознавание различных объектов и их свойств. Тренировочные самостоятельные работы состоят из однотипных заданий, содержащих существенные признаки и свойства данного определения, правила. Конечно, эта работа мало способствует умственному развитию детей, но она необходима, так как позволяет выработать основные умения и навыки и тем самым создать базу для дальнейшего изучения математики.
При выполнении тренировочных самостоятельных работ учащимся еще необходима помощь учителя. Можно разрешить пользоваться и учебником, и записями в тетрадях, таблицами и т. п. Все это создает благоприятный климат для слабых учащихся. В таких условиях они очень легко включаются в работу и выполняют ее.
Тема: | Решение текстовых задач при помощи систем уравнений, содержащих уравнения второй степени. |
Цель: | Расширение и углубление знаний, формирование умений решать системы, повышенной сложности, уметь составлять системы по условию задачи: Развивать устойчивый интерес к предмету, умение самостоятельно работать; Воспитывать умение осуществлять индивидуальную мыслительную деятельность; |
Оборудование: | Учебник, «сборники заданий по математике» Кузнецов Л. В.; |
Ход урока: