Смекни!
smekni.com

Преподавание алгебраического материала в начальной школе (стр. 5 из 14)

Итак, что такое "величина" и какой интерес она представляет для построения начальных разделов школьной математики?

В общем употреблении термин "величина" связан с понятиями "равно", "больше", "меньше", которые описывают самые различные качества (длину и плотность, температуру и белизну). В.Ф. Каган ставит вопрос о том, какими общими свойствами эти понятия обладают. Он показывает, что они относятся к совокупностям - множествам однородных предметов, сопоставление элементов которых позволяет применить термины "больше", "равно", "меньше" (например, к совокупностям всех прямолинейных отрезков, весов, скоростей и т.д.).

Множество предметов только тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить относительно любых его элементов А и В, будет ли А равно В, больше В или меньше В. При этом для любых двух элементов А и В имеет место одно и только одно из соотношений: А=В, А>В, А<В.

Эти предложения составляют полную дизъюнкцию (по крайней мере одно имеет место, но каждое исключает все остальные).

В.Ф. Каган выделяет следующие восемь основных свойств понятий "равно", "больше", "меньше": ([10], c. 17-31).

1) Имеет место по крайней мере одно из соотношений: А=В, А>В, А<В.

2) Если имеет место соотношение А=В, то не имеет места соотношение А<В.

3) Если имеет место соотношение А=В, то не имеет места соотношение А>В.

4) Если А=В и В=С, то А=С.

5) Если А>В и В>С, то А>С.

6) Если А<В и В<С, то А<С.

7) Равенство есть отношение обратимое: из соотношения А=В всегда следует соотношение В=А.

8) Равенство есть соотношение возвратное: каков бы ни был элемент А рассматриваемого множества, А=А.

Первые три предложения характеризуют дизъюнкцию основных соотношений "=", ">", "<". Предложения 4 - 6 - их транзитивность при любых трех элементах А, В и С. Следующие предложения 7 - 8 характеризуют только равенство - его обратимость и возвратность (или рефлексивность). Эти восемь основных положений В.Ф.Каган называет поcтулатами сравнения, на базе которых можно вывести ряд других свойств величины.

Эти выводные свойства В.Ф.Каган описывает в форме восьми теорем:

I. Соотношение А>В исключает соотношение В>А (А<В исключает В<А).

II. Если А>В, то В<А (если А<В, то В>А).

III. Если имеет место А>В, то не имеет места A<B.

IV. Если А1=А2, А2=А3,.., Аn-1=А1, то А1=Аn.

V. Если А1>А2, А2>А3,.., Аn-1>Аn, то А1>Аn.

VI. Если А1<А2, А2<А3,.., Аn-1<Аn, то А1<Аn.

VII. Если А=С и В=С, то А=В.

VIII. Если имеет место равенство или неравенство А=В, или А>В, или А<В, то оно не нарушится, когда мы один из его элементов заменим равным ему элементом (здесь имеет место соотношение типа:

если А=В и А=С, то С=В;

если А>В и А=С, то С>В и т.д.).

Постулатами сравнения и теоремами, указывает В.Ф.Каган, "исчерпываются все те свойства понятий "равно", "больше" и "меньше", которые в математике с ними связываются и находят себе применение независимо от индивидуальных свойств того множества, к элементам коего мы их в различных частных случаях применяем" ([10], стр. 31).

Свойства, указанные в постулатах и теоремах, могут характеризовать не только те непосредственные особенности объектов, которые мы привыкли связывать с "равно", "больше", "меньше", но и со многими другими особенностями (например, они могут характеризовать отношение "предок - потомок"). Это позволяет встать при их описании на общую точку зрения и рассматривать, например, под углом зрения этих постулатов и теорем любые три вида отношений "альфа", "бета", "гамма" (при этом можно установить, удовлетворяют ли эти отношения постулатам и теоремам и при каких условиях).

Под таким углом зрения можно, например, рассматривать такое свойство вещей, как твердость (тверже, мягче, одинаковая твердость), последовательность событий во времени (следование, предшествование, одновременность) и т.д. Во всех этих случаях соотношения "альфа", "бета", "гамма" получают свою конкретную интерпретацию. Задача, связанная с подбором такого множества тел, которое бы имело эти отношения, а также выявление признаков, по которым можно было бы характеризовать "альфа", "бета", "гамма", - это есть задача на определение критериев сравнения в данном множестве тел (практически ее в ряде случаев решить нелегко). "Устанавливая критерии сравнения, мы претворяем множество в величину", - писал В.Ф.Каган ([10], стр. 41).

Реальные объекты могут рассматриваться под углом зрения разных критериев. Так, группа людей может рассматриваться по такому критерию, как последовательность моментов рождения каждого ее члена. Другой критерий - относительное положение, которое примут головы этих людей, если их поставить рядом на одной горизонтальной плоскости. В каждом случае группа будет претворяться в величину, имеющую соответствующее наименование - возраст, рост. В практике величиной обычно обозначают как бы не самое множество элементов, а новое понятие, введенное для различения критериев сравнения (наименование величины). Так возникают понятия "объем", "вес", "электрическое напряжение" и т.д. "При этом для математика величина вполне определена, когда указаны множество элементов и критерии сравнения", - отмечал В.Ф.Каган ([10], стр. 47).

В качестве важнейшего примера математической величины этот автор рассматривает натуральный ряд чисел. С точки зрения такого критерия сравнения, как положение, занимаемое числами в ряду (занимают одно место, следует за..., предшествует), этот ряд удовлетворяет постулатам и поэтому представляет собой величину.По соответствующим критериям сравнения совокупность дробей также претворяется в величину.

Таково, по В.Ф. Кагану, содержание теории величины, играющей важнейшую роль в деле обоснования всей математики.

Работая с величинами (отдельные их значения целесообразно фиксировать буквами), можно производить сложную систему преобразований, устанавливая зависимости их свойств, переходя от равенства к неравенству, выполняя сложение (и вычитание), причем при сложении можно руководствоваться коммутативным и ассоциативным свойствами. Так, если дано соотношение А=В, то при "решении" задач можно руководствоваться соотношением В=А. В другом случае при наличии соотношений А>В, В=С можно заключить, что А>С. Поскольку при а>b существует такое с, что а=b+с, то можно найти разность а и b (а-b=с), и т.д. Все эти преобразования можно выполнить на физических телах и других объектах, установив критерии сравнения и соответствие выделенных отношений постулатам сравнения.

Приведенные выше материалы позволяют заключить, что и натуральные, и действительные числа одинаково прочно связаны с величинами и некоторыми их существенными особенностями. Нельзя ли эти и другие свойства сделать предметом специального изучения ребенка еще до того, как вводится числовая форма описания отношения величин? Они могут послужить предпосылками для последующего развернутого введения числа и его разных видов, в частности для пропедевтики дробей, понятий координат, функции и других понятий уже в младших классах.

Что может быть содержанием этого начального раздела? Это знакомство с физическими объектами, критериями их сравнения,выделяющими величину, как предмет математического рассмотрения, знакомство со способами сравнения и знаковыми средствами фиксации его результатов, с приемами анализа общих свойств величин. Это содержание нужно развернуть в относительно подробную программу преподавания и, главное, связать ее с теми действиями ребенка, посредством которых он может этим содержанием овладеть (конечно, в соответствующей форме). Вместе с тем нужно экспериментальным, опытным путем установить, могут ли дети 7 лет усвоить эту программу, и какова целесообразность ее введения для последующего преподавания математики в начальных классах в направлении сближения арифметики и начальной алгебры.

До сих пор наши рассуждения носили теоретический характер и были направлены на выяснение математических предпосылок построения такого начального раздела курса, который знакомил бы детей с основными алгебраическими понятиями (до специального введения числа).

Выше были описаны основные свойства, характеризующие величины. Естественно, что детям 7 лет бессмысленно читать "лекции" относительно этих свойств. Необходимо было найти такую форму работы детей с дидактическим материалом, посредством которой они смогли бы, с одной стороны, выявить в окружающих их вещах эти свойства, с другой - научились бы фиксировать их определенной символикой и проводить элементарный математический анализ выделяемых отношений.

В этом плане программа должна содержать, во-первых, указание тех свойств предмета, которые подлежат освоению, во-вторых, описание дидактических материалов, в-третьих, - и это с психологической точки зрения главное - характеристики тех действий, посредством которых ребенок выделяет определенные свойства предмета и осваивает их. Эти "составляющие" образуют программу преподавания в собственном смысле этого слова.

Конкретные особенности этой гипотетической программы и ее "составляющих" имеет смысл излагать при описании процесса самого обучения и его результатов. Здесь представляется схема данной программы и ее узловые темы.

Тема I. Уравнивание и комплектование объектов (по длине, объему, весу, составу частей и другим параметрам).

Практические задачи на уравнивание и комплектование. Выделение признаков (критериев), по которым одни и те же объекты могут быть уравнены или укомплектованы. Словесное обозначение этих признаков ("по длине", по весу" и т.д.).