Смекни!
smekni.com

Научные основы школьного курса химии. методика изучения растворов (стр. 6 из 12)

Соли могут реагировать с водой, связывая частицы воды. В зависимости от природы соли, среда может быть нейтральная, щелочная или кислая.

Гидролиз – реакция обмена между солью и водой, в результате которой наблюдается сдвиг равновесия диссоциации молекул воды, приводящий к –накоплению в растворе избытка ионов водорода или гидроксид ионов, меняющих реакцию среды.

Вспомните, какой характер имеет среда при гидролизе:

1) Соли, образованной сильным основанием и слабой кислотой?

2) Соли, образованной слабым основанием и сильной кислотой?

3) Соли, образованной слабым основанием и слабой кислотой?

4) Что можно сказать о взаимодействии с водой солей, образованных сильным основанием и сильной кислотой?

Ответ правильный.

Среда щелочная.

Среда кислая.

Среда нейтральная, или близкая к ней. Гидролиз идет полностью до конца.

В этом случае реакция не идет, т.е. эти соли гидролизу не подвергаются.

3. Формирование способов умственных и практических действий с новыми знаниями.

Деятельность учителя Деятельность ученика
(время 15 минут)Мы с вами выдвинули гипотезу и доказали ее. Теперь давайте ее подтвердим на других примерах. Перед вами на столе находится растворы следующих солей: KJ; K2S; AlCl3; (NH4)2S.С помощью индикатора, определите среду каждого раствора, дайте характеристику природе соли. Результаты сведите в следующую таблицу:
Соль Природа соли Среда Механизм процесса
KJ Образована сильным основанием и сильной кислотой нейтральная KJ « K+ + JKOH « K+ + OHHJ « H+ + J
K2S Образована сильным основанием и слабой кислотой щелочная K+ + J + НОН « K+ + OH + H+ + J ¬¾¾¾¾K2S « 2K+ + S2–S2– + HOH « HS + OHK2S + HOH « KHS +KOH
AlCl3 Образована слабым основанием и сильной кислотой кислая AlCl3 « Al3+ + 3ClAl3+ + НОН « Al(OH)2+ + H+ AlCl3 + НОН « Al(OH)Cl2 + HCl
(NH4)2S Образована слабым основанием и слабой кислотой нейтральная (NH4)2S « 2NH4+ + S2–2NH4+ + S2– + HOH « NH4OH + H2S(NH4)2S + 2HOH « 2NH4OH + H2S

Задание на дом:

Ф.Г. Фельдман, Г.Е. Рудзитис. Химия. 9-й класс. М. Просвещение. 1999.с.18-20

§ 6, упражнения 1, 2, 3, 8 и подготовить ответы на следующие вопросы:

1) Почему не подвергается гидродлизу хлорид калия?

2) Почему в таблице растворимости солей в некоторых случаях стоят прочерки?

3) Как определить гидролизуется или нет данная соль?

4) Можно ли применить принцип Ле Шателье в случае реакции гидролиза?

5) Используется ли гидролиз в быту?

6) Возможны ли случаи гидролиза в природе?

7) О чем должен подумать агроном, прежде чем внести удобрения в почву?

Практическая часть.

1. Напишите уравнение реакций взаимодействия с водой следующих солей:

СaC2; Al4C3; Ca3N2; Mg3P2; CaH2; NaH.

Объясните причину этого процесса, по возможности определите характер среды.

2. В раствор сульфата меди внесите небольшой кусочек металлического лития и объясните причину образования осадка черного цвета.

3. В демонстрационный штатив поместите две пробирки с растворами хлорида магния, хлорида железа (III). В каждую из пробирок поместите по кусочку лития. Проанализируйте наблюдаемые явления и сделайте выводы.

4. В раствор хлорида меди (II) внесите тщательно зачищенный кусочек каль- ция. Опишите наблюдаемые явления.

5. В демонстрационный штатив поместите пробирку с раствором хлорида железа (III) и внесите зачищенный кусочек кальция. Опишите наблюдение и сравните их с опытом (1) и (4) . Дайте объяснения результатам эксперимента.

6. Проведите опыты по взаимодействию магния и алюминия с растворами солей:

а) В пробирку налейте примерно 15 мл раствора сульфата железа (III) и внесите магний.

б) В две пробирки налейте по 15 мл раствора сульфата меди (II) и в каждую внесите кусочек алюминия. Наблюдайте за ходом процесса. Через 3 минуты внесите в одну из пробирок раствор хлорида натрия. Что вы наблюдаете?

Проведите анализ опытов а) и б).

Глава 2. Методика изучения растворов.

Теория растворов – одна из ведущих теорий курса химии. Причины важности темы кроется не только в том, что она имеет большое практическое значение, но и прежде всего во взаимосвязи этой темы со многими курсами химических дисциплин, а так же межпредметные связи ее с биологией, географией, физикой и другими дисциплинами.

Первые сведения о воде школьники получают еще в начальной школе при изучении природоведения и географии, а более детально знакомятся со свойствами воды, растворимостью и растворами в курсе химии 8-го класса.

Проведем анализ литературных данных по изучаемому вопросу. Так в работе [18] рассматривается методика проведения двух лабораторных уроков по теме: «Растворимость веществ в воде».

На первом уроке учитель сообщает учащимся, что многие газы, жидкости и твердые вещества, при контакте с водой растворяются в ней. Из курса физики учащимся известно, что молекулы веществ находятся в непрерывном движении. Этим и объясняется явление диффузии – самопроизвольного взаимопроникновения, приведенных в соприкосновение, различных веществ. Далее говорится о том, что если положить в цилиндр с водой кристаллы дихромата калия, то через некоторое время вокруг кристаллов вода окрасится в оранжевый цвет. Невидимые частицы дихромата калия под влиянием молекул воды оторвались от кристаллов и диффундировали в воде. Диффузия происходит медленно, но в конце концов получается однородный раствор. Затем предлагается ответить на вопрос: можно ли ускорить процесс растворения? Для получения ответа учащиеся проделывают следующий лабораторный опыт: в одну пробирку они помещают немного поваренной соли крупного помола, а в другую – сильно измельченную. Затем в обе пробирки добавляют одинаковый объем воды. Учащиеся наблюдают, что соль мелкого помола растворяется быстрее, чем крупного. На основе этого опыта они делают вывод: процесс растворения ускоряется при измельчении вещества. Чем же это объясняется? Тем, что при измельчении вещества увеличивается поверхность соприкосновения его с жидкостью. Далее учащиеся сравнивают растворение различных веществ в воде. При этом они выполняют следующий опыт. В четыре пробирки насыпают равные порции сульфата кальция, сульфата бария, алюмокалиевых квасцов, хлорида натрия. Во все пробирки наливают объем воды. Учащиеся наблюдают, что сульфаты бария и кальция как будто совсем не растворяются, квасцы растворились частично, а хлорид натрия практически полностью. Затем ставится перед учащимися вопрос: можно ли все-таки добиться растворения сульфата бария, сульфата кальция и квасцов? Учащиеся предлагают нагреть пробирки, в которых они растворяли указанные вещества. Выполнив эту операцию, они отмечают, что квасцы растворились, а сульфаты бария и кальция нет. На основе этого учащиеся приходят к выводу, что повысив температуру, все-таки можно увеличить растворимость веществ. Для подтверждения того, что сульфаты бария и кальция полностью не растворимы, учащиеся фильтруют через небольшие фильтры растворы с данными солями и несколько капель каждого фильтрата выпаривают на жестяной пластинке. При выпаривании капля сульфата бария на пластинке никакого следа не оставляет, а в случае с сульфатом кальция, на пластинке в небольшом количестве появляется белый налет.

Проведенный комплекс опытов дает возможность сделать вывод о том, что по растворимости в воде вещества делятся на растворимые, малорастворимые и нерастворимые [18].

Учитель демонстрирует учащимся таблицу растворимости веществ в воде и объясняет, как ею пользоваться. После этого они записывают в тетрадь определение растворимости.

Далее от качественной характеристики учитель переходит к количественной. Он предлагает учащимся проверить, насколько хорошо растворима поваренная соль. В пробирку с раствором поваренной соли из предыдущего опыта учащиеся добавляют примерно столько же поваренной соли, сколько было взято ранее. Они взбалтывают пробирки с поваренной солью и наблюдают, что новая порция соли полностью уже не растворяется. При нагревании этого раствора наблюдается тот же эффект. Таким образом, учитель подводит учащихся к понятию “насыщенный раствор” и даёт его определение[18].

Те же операции учащиеся проделывают с квасцами. В результате они убеждаются, что в такой же порции воды при нагревании квасцов растворимость больше, чем поваренной соли. Учащиеся делают вывод: нагревание влияет на растворимость квасцов значительно сильнее, чем на растворимость поваренной соли. Зависимость растворимости солей от повышения температуры определяется природой растворяемого вещества. Изменение растворимости некоторых видов с изменением температуры наглядно показывают кривые растворимости. Учитель демонстрирует график кривых растворимости и разъясняет учащимся, как им пользоваться, раскрывает смысл коэффициентов растворимости, т.е. рассматривает количественную характеристику растворимости.

На втором уроке [18], учащиеся решают экспериментальную задачу: установите экспериментальным путем количественную зависимость растворимости нитрата калия от температуры. Составьте план определения коэффициента растворимости нитрата калия при температуре 20, 30, 40, 50° С и осуществите его в лаборатории, имея необходимое оборудование. Используя ваши данные, начертите график зависимости растворимости нитрата калия от температуры, предварительно обсудив с учителем план решения данной экспериментальной задачи. Учащиеся последовательно выполняют следующие операции: взвешивают, пустую фарфоровую чашку – m1 в колбе на 50-100 мл. Готовят в 30-50 мл воды концентрированный раствор нитрата калия при температуре на 5-10° С больше, чем заданная, и следя за показанием термометра, медленно охлаждают раствор до заданной температуры (на дне колбы должны выпадать кристаллы). Быстро отливают во взвешенную чашку 5-10 мл раствора (выпавшие кристаллы должны остаться в колбе). Взвешивают чашку с раствором, предварительно охладив его до комнатной температуры (на дне чашки появляются кристаллы нитрата калия) – m2. Осторожно выпаривают раствор досуха, охлаждают чашку с оставшимся в ней нитратом калия и взвешивают – m3. Оставшийся в колбе раствор можно вновь нагреть до растворения выпавших кристаллов, охладить до другой, заданной температуры и повторить все операции.