Смекни!
smekni.com

Математика и физика в средней школе (стр. 5 из 6)

Понятие функции играет в физике исключительно важную роль. По существу любой физический закон лишь тогда считается четко сформулирован, когда ему придана математическая форма, точнее – если он записан в виде некоторой функциональной зависимости между физическими величинами.

Важно учитывать и другой факт. Не всякая формула, связывающая физические величины, выражает причинно-следственную зависимость между ними. В ряде случаев аналитическая запись отражает лишь определенное соответствие между физическими величинами. Примерами могут служить формулы для расчета плотности твердых тел (

), удельной теплоты плавления (
). На основании, например, первой формулы можно, казалось бы, сказать, что
при
, но такое (математически правильное) высказывание неверно с физической точки зрения.

Функциональное соответствие, связывающее давление Р и объем V идеального газа при постоянной температуре (закон Бойля - Мариотта), записывается так:

.

При изотермическом процессе причиной изменения давления идеального газа служит изменение его объема, и наоборот. Причинно-следственную связь между физическими величинами для этих и аналогичных случаев назовем взаимной.

§3.2. Формирование физико-математических понятий: производная, первообразная и интеграл в школе.

Как могут быть реализованы межпредметные связи физики и математики при формировании таких понятий, как функция, величина, производная, первообразная и интеграл. Причины, побудившие обратится к этому вопросу следующие. Во-первых, позднее изучение в курсе математики названных понятий затрудняет преподавание, например, механики в курсе физики. Во-вторых, изучению всего курса физики препятствует недостаточное использование математического аппарата, которое происходит либо из-за позднего его формирования у учащихся, либо из-за отсутствия согласованности действий преподавателей физики и математики в использовании общих физико-математических понятий.

Выход из создавшейся ситуации состоит в совместном формировании у учащихся понятий математического анализа в курсе физики и математики. Именно при параллельном изучении основ механики и основ математического анализа открываются наибольшие возможности для формирования как физических понятий – мгновенная скорость, мгновенная ускорение, перемещение, работа и т. д., так и математических – производная, первообразная и интеграл.

Согласно такой методике реализация межпредметных связей предпочтение следует отдать скорей наглядности физики, чем строгости математических доказательств. Поэтому на уроках математики, например, производную сумму вводить при помощи закона сложения скоростей; при выводе формулы производной функции, основанном на использовании на индукции, математические выкладки подтверждаются примерами из физики. Рассмотрение физического примера – движение тела, брошенного вертикально вверх – облегчает задачу формирования понятий возрастающей и убывающей функций, позволяет мотивированно ввести понятие второй производной и на этой основе получить правило определения выпуклости графика. Что касается понятий «первообразная» (неопределенный интеграл) и «интеграл» (определенный интеграл), то их формирование целесообразно проводить с широким использованием физических примеров, начиная с их определения, получения основного свойства первообразной и интеграла и кончая правилами интегрирования многочлена [14].

Для курса физики знание производной и интеграла открывает перспективы в плане возможности более строгого определения рода физических величин: точной записи второго закона Ньютона и закона электромагнитной индукции; получения формулы работы силы тяготения в сферически симметричном поле с последующим выводом второй космической скорости; ЭДС индукции, возникающей в рамке при вращении в магнитном поле; доказательства инвариантности действия сил относительно инерциальных систем отсчета; упрощения работы с графиками; и наконец, рассмотрения видов равновесия тел не только с позиций действия сил, но и с энергетической точки зрения. Знание учащимися производной и интеграла позволяет выработать у них общий подход к определению физических величин и решению графических задач физического содержания.

С этой целью можно, например, использовать алгоритмические схемы, являющиеся общими для определения математических и функциональных физических зависимостей. Так схема общего подхода к определению физических понятий с помощью производной может быть следующей [12]:

1. Убедившись в возможности применения понятия производной, записать функциональную зависимость в виде

.

2. Найти отношение приращения функции к приращению аргумента, то есть среднюю скорость изменения функции

.

3. Осуществить предельный переход над функцией

при условии
, записав выражение:

.

4. Сформулировать определение физической величины по схеме: название физического понятия, определяемого как производная от данной функции; название аргумента.

Для определения физического понятия с помощью интеграла можно избрать следующую схему действия [14]:

1. Убедиться в возможности применения понятия «интеграл» в данной ситуации: приблизительное значение искомой физической величины может быть представлена как сумма выражений

, где
- некоторое среднее значение функции на промежутке
; графически эта сумма должна соответствовать значению площади ступенчатой фигуры, а при
площадь должна сводится к площади криволинейной трапеции.

2. Записать искомую физическую величину как

.

3. Сформулировать: определение найденной физической величины, определяемой как интеграл от данной функции; название функции; название аргумента.

В большинстве случаев схема записи интеграла может быть иной. Поскольку интегрирование – это действие, обратное дифференцированию, применим следующий порядок действий:

1. Записать производную искомой функции по соответствующему аргументу, например -

.

2. Определить функцию, от которой была найдена производная, то есть первообразную

.

3. Найти изменение искомой функции при соответствующих значениях аргумента:

и
, то есть интеграл
, после чего сформулировать определение физической величины (см. выше пункт 3).

Преимущества, которые дает знание производной и интеграла для изучения курса физики в 9 – 11 классах, могут быть получены только в результате совместной работы над формированием понятий математического анализа на уроках физики и математики. На рисунке 3.1 приводится схема формирования понятий производная, первообразная и интеграл на уроках физики и математики [13].

Рис 3.1

При решении предлагаемых задач используются определения производной и первообразной, то есть понятий которые вводятся в разделе высшей математики, называемом математическим анализом и изучаемом в школе [15]:

Задача 1.Определите, при каком соотношении между внутренним и внешним сопротивлением электрической цепи полезная мощность имеет максимальное значение.

Решение: полезная мощность, выделяющаяся на резисторе R, по закону Джоуля – ленца равна:

где

- сила тока, определяемая по закону Ома для полной цепи. Очевидно, что
при
(короткое замыкание) и при
(цепь разомкнута). Исследуем, при каком соотношении между сопротивлениями r и R полезная мощность максимальна. Итак задача свелась с исследованию функции
на экстремум. Вспомним условия экстремума. Построить график зависимости полезной мощности от R: