Консервативное сосредоточение. Испытуемые формулируют гипотезу, выбирают для нее положительный пример в качестве главного, затем производят последовательные переформулировки (при каждой из которых меняется только один признак), замечая после каждой попытки, оказывается ли результат положительным или отрицательным. Например, испытуемому могли предъявить большое количество паттернов и сказать, что один большой красный квадрат является положительным примером, как показано в таблице 1. Поскольку каждый из этих признаков потенциально является существенным, принимается гипотеза 1БК9. Затем испытуемый мог выбрать гипотезу 1БК (выбрав форму как возможный решающий параметр). Отметив, что и 9, и являются положительными примерами, испытуемые могли сделать правильный вывод, что форма несущественна, и переключить свое внимание на цвет, выбрав 1Б39 и так далее, пока, сосредотачивая свое внимание на одном признаке, они не отбрасывали несущественные признаки.
Рискованное сосредоточение характеризуется изменением более чем одного признака за один раз. Хотя консервативное сосредоточение методологически обосновано и, вероятнее всего, приводит к валидному понятию, испытуемые могут склониться к "риску", надеясь быстрее определить понятие.
Из всех вышеописанных стратегий консервативное сосредоточение было наиболее эффективным; прием сканирования давал только временный успех. Трудность же с моделью Брунера состоит в том, что она предполагает, будто испытуемые придерживаются одной стратегии, тогда как в действительности некоторые из них колеблются, переходя в процессе решения задачи от одной стратегии к другой.
Таблица1Типичный ход стратегий "Консервативное сосредоточение" и "рискованное сосредоточение”
Стимульные паттерны | Категория | Гипотеза | |
Консервативное сосредоточение | |||
Стимул в фокусе | 1БК9 | + | 1БК9 |
1БК | + | 1БК | |
1БЗ9 | – | 1БК | |
1МК9 | + | 1К | |
2БК9 | – | 1К | |
Понятие: 1К | |||
Рискованное сосредоточение | |||
Стимул в фокусе | 1БК9 | + | 1БК9 |
1 | 1МК | + | 1К |
2 | 2БК9 | – | 1К |
3 | 1БЗ9 | – | 1К |
Понятие: 1К |
Б – обозначает большой, М – маленький, К – красный, З – зеленый
Стратегии мышления
Излагая суть модели проверки гипотез Брунера, Ж.Готфруа выделил три тактических подхода, к которым прибегают при решении задач [2]. Эти подходы различаются как по эффективности, так и по уровню сложности.
Случайный перебор. При такой стратегии случайным образом формулируется гипотеза либо осуществляется выбор, а затем оценивается их правомерность, и в случае отрицательной оценки выдвигается новое предположение; так продолжается до тех пор, пока не будет найдено решение.
Такая стратегия осуществляется по методу проб и ошибок, и ее используют, как правило, дети и субъекты со слабо структурированным мышлением. Главный ее недостаток состоит в том, что поиск ведется не систематично и поэтому может оказаться неполным и привести либо к отказу от дальнейших попыток, либо к неприятным последствиям (особенно если речь идет, например, о распознавании ядовитых грибов).
Рациональный перебор. При такой стратегии исследуют некое центральное, промежуточное или наименее рискованное предположение, а затем, изменяя каждый раз по одному элементу, «отсекают» неверные элементы поиска.
Рассмотрим простой пример. Ясно, что если меня попросят отгадать неизвестную мне букву латинского алфавита, задавая вопросы, на которые мне будут отвечать «да» или «нет», то логичнее всего будет сначала спросить, расположена ли она в алфавите между a и m или между n и z. Если верным окажется второй вариант, то можно будет спросить, располагается ли она между nи s или между t и z и т.д. При таких последовательных приближениях круг поиска постепенно сужается, пока не будут найдены ключевые элементы искомой категории или поставленной задачи. Именно так мы чаще всего узнаем животное, которое видели во время прогулки, или находим место поломки в двигателе автомобиля.
Систематический перебор. При такой стратегии мышления субъект охватывает своим умом всю совокупность возможных гипотез и систематически анализирует их одну за другой, пытаясь прийти таким образом к каким-то выводам.
Такая стратегия, разумеется, самая строгая, но в то же время и самая скучная. Неудивительно поэтому, что в нашей повседневной жизни она используется редко. Однако это единственная стратегия, позволяющая действительно наиболее адекватно разрабатывать планы долговременных или сложных действий.
В науке, например, очень многие эксперименты бывают заранее обречены на неудачу из-за того, что исследователь с самого начала не предусмотрел все возможные последствия различных манипуляций и меры строгого контроля всех переменных, кроме независимой. С другой стороны, всегда хочется верить, что диагноз, поставленный нам врачом, явился результатом систематического, а не рационального и тем более не случайного перебора.
Все это касается самых различных сторон нашей жизни. Определенную стратегию использует студент, когда решает, что именно надо выучить к экзамену, просмотрев список вопросов, которые могут быть заданы. О стратегиях мышления важно помнить и родителям, выбирающим какой-либо метод воспитания, не оценив предварительно возможные последствия такого воспитания для человека, который когда-то станет взрослым и за которого они несут ответственность. Поскольку люди обычно не располагают всеми необходимыми данными для решения своих проблем и не могут оценить все последствия того или иного выбора, они довольно редко в своей повседневной жизни выбирают действительно наиболее адекватные формы поведения.
Человеческий мозг и компьютер
Ж. Готфруа провел параллель между работой человеческого мозга и компьютера [2]. Речь идет о применении вышеперечисленных стратегий при решении проблем.
Поскольку компьютер может работать только по программе, рассматривать здесь случайный перебор бессмысленно. В случае если речь идет об игре, в которой такая стратегия не используется, было бы не экономно «заставлять» компьютер искать решение задачи с помощью этой стратегии.
Остальные две стратегии используются как человеком, так и компьютером.
Рациональный перебор соответствует эвристическому методу, при котором процессор занимается поисками частичных решений, чтобы максимально повысить вероятность нахождения приемлемого решения, сведя к минимуму время и усилия на поиск.
Систематический перебор соответствует алгоритмическому методу; в этом случае просматриваются все возможные (при имеющемся наборе данных) решения с целью найти то из них, которое наиболее эффективно. Однако компьютер, так же как и человек, не использует эту последнюю стратегию для решения сложных задач. Например, при игре в шахматы алгоритмический метод потребовал бы того, чтобы компьютер для полной уверенности в выигрыше каждый раз просматривал 10120 возможностей. В подобных случаях выгоднее использовать эвристический метод, позволяющий с помощью ряда подпрограмм ограничивать поиски решений конкретными «узкими» задачами, такими как захват центра шахматной доски или атака на короля противника.
Работа нейронных сетей также аналогична процессу мышления, ведь нейронные сети и задумывались изначально как модель работы мозга.
При обучении с учителем нейронная сеть (эмулятор нейронной сети) ищет решение в виде вектора (векторов) весовых коэффициентов. Алгоритм обучения сети методом обратного распространения ошибок использует стратегию рационального перебора решений (векторов), поскольку каждое новое найденное решение приближает сеть к нужному решению.
Случайный выбор вектора весовых коэффициентов практически не способствует нахождению решения, что можно продемонстрировать ученикам, применяя для наглядности такой нейроэмулятор, в котором предусмотрена возможность свободного доступа к коэффициентам. Выбранный авторами данного исследования для изучения эмулятор NeuralNetworkWizard 1.7 такой возможностью не обладает.
Также в общем случае не эффективен последовательный перебор всех возможных значений коэффициентов (систематический перебор), поскольку число таких комбинаций теоретически бесконечно, а в программной реализации достаточно велико, что требует больших затрат времени на нахождение нужного решения.
По мнению Ж. Готфруа, «компьютер может послужить средством, позволяющим <…> лучше понять мышление и тем самым расширить его возможности» [2, c. 471].
Обучая нейронные сети, ученики сами начнут применять стратегию рационального перебора решений.
1. 3 Теоретические аспекты профильного обучения
В соответствии с распоряжением Правительства Российской Федерации от 29 декабря 2001 г. №1756 «Об одобрении концепции модернизации российского образования на период до 2010 года» на старшей ступени общеобразовательной школы предусматривается профильное обучение, ставится задача создания «системы специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы, ориентированной на индивидуализацию обучения ч социализацию обучающихся, в том числе с учетом реальных потребностей рынка труда <...> отработки гибкой системы профилей и кооперации старшей ступени школы с учреждениями начального, среднего и высшего профессионального образования».
Прежде всего, следует разграничить понятия «профильное обучение» и «профильная школа».
Профильное обучение – средство дифференциации и индивидуализации обучения, позволяющее за счет изменений в структуре, содержании и организации образовательного процесса более полно учитывать интересы, склонности и способности учащихся, создавать условия для обучения старшеклассников в соответствии с их профессиональными интересами и намерениями в отношении продолжения образования. Профильная школа есть институциональная форма реализации этой цели. Это основная форма, однако перспективными в отдельных случаях могут стать иные формы организации профильного обучения, в том числе выводящие реализацию соответствующих образовательных стандартов и программ за стены отдельного общеобразовательного учреждения.