Смекни!
smekni.com

Изучение технологии нейронных сетей в профильном курсе информатики (стр. 10 из 10)

Y[2] = f (X[1] * W[1, 2] + X[2] * W[2, 2] + … + X[m] * W[m, 2]);

Y[n] = f (X[1] * W[1, n] + X[2] * W[2, n] + … + X[m] * W[m, n]).

f – это активационная функция.

Пример. Рассчитать значения выходов для данной нейронной сети

Рис 3.

при входных значениях X[1]=6.3, X[2]=-3, X[3]=5.

Активационную функцию принять пороговой, где значение порога равно 10.

Значения весов:

W[1,1]=0.5; W[1,2]=7;

W[2,1]=-7; W[2,2]=4.5;

W[3,1]=15; W[3,2]=-10;

Решение:

Y[1]= f (6.3*0.5 + (-3)*(-7)+5*15)= f (3.15+21+75) = f (99.15) = 1;

Y[2]= f (6.3*7+(-3)*4.5+5*(-10))= f (44.1-13.5-50) = f (-19.4) = 0;

Т.е. значения выходов данной сети Y[1] и Y[2] равны 1 и 0 соответственно.

Задание на дом. Рассчитать значения выходов для данной сети при входных значениях X[1]=2; X[2]=1; X[3]=-1.

Однослойные персептроны обладают малыми вычислительными возможностями, что ограничивает их использование. Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными способностями.

Многослойные сети (персептроны) – сети, в которых каждый нейрон слоя связан с каждым нейроном следующего слоя. Многослойные сети рассмотрим на примере двухслойной сети.

Рис. 4

Элементы первого входного слоя не обрабатывают, а только принимают информацию и распространяют ее далее по сети. Значения входов, количество которых равно m обозначим одномерным массивом X. Далее входная информация поступает на внутренний слой. Веса всех нейронов этого слоя формируют двумерный массив W размерностью m*n. Значения выходов внутреннего слоя формируют одномерный массив Z с количеством элементов равным n. Из внутреннего слоя информация поступает на выходной слой. Веса всех нейронов выходного слоя формируют двумерный массив K размерностью n*p. Значения выходов внешнего слоя формируют массив Y с количеством элементов равным p.

Данная сеть имеет m входов и p выходов. Данная сеть является двухслойная, потому что только два слоя нейронов обрабатывают информацию.

Значения выходов нейронов скрытого слоя определяются по формулам

Z[1] = f (X[1] * W[1, 1] + X[2] * W[2, 1] + … + X[m] * W[m, 1]);

Z[2] = f (X[1] * W[1, 2] + X[2] * W[2, 2] + … + X[m] * W[m, 2]);

Z[n] = f (X[1] * W[1, n] + X[2] * W[2, n] + … + X[m] * W[m, n]).

Значения выходов нейронов выходного слоя определяются по формулам

Y[1] = f (Z[1] * K[1, 1] + Z[2] * K[2, 1] + … + Z[n] * K[n, 1]);

Y[2] = f (Z[1] * K[1, 2] + Z[2] * K[2, 2] + … + Z[n] * K[n, 2]);

Y[n] = f (Z[1] * K[1, p] + Z[2] * K[2, p] + … + Z[n] * K[n, p]).

Пример. Рассчитать значения выходов для данной нейронной сети

Рис 5.

при входных значениях X[1]=2, X[2]=-5.

Активационную функцию принять пороговой, где значение порога равно 0.

Значения весов для массива W:

W[1,1]=0.5; W[1,2]=-0.2; W[1,3]=0;

W[2,1]=-1; W[2,2]=1.8; W[2,3]=0.3;

для массива K:

K[1,1]=2; K[1,2]=0;

K[2,1]=0.4; K[2,2]=-1;

K[3,1]=-2; K[3,2]=4.2.

Решение

Вначале вычислим значения выходов нейронов скрытого слоя:

Z[1] = f (2 * 0.5 + (-5) * (-1)) = f (1+5) = f (6) = 1;

Z[2]= f (2 * (-0.2) + (-5) * 1.8) = f (-0.4 + (-9)) = f (-9.4) = 0;

Z[3]= f (2 * 0 + (-5) * 0.3) = f (0 +(-1.5)) = f (-1.5) = 0;

Далее вычислим значения выходов нейронов выходного слоя:

Y[1] = f (1 * 2 + 0 * 0.4 + 0 * (-2)) = f (2+0+0) = f(2) = 1;

Y[2] = f (1 * 0 + 0 * (-1) + 0 * 4.2) = f (0 + 0 +0) = f(0) = 0;

Задание на дом. Рассчитать значения выходов для данной нейронной сети при
X[1] = -5, X[2]=2.

Добавление новых слоев в нейросети увеличивает ее вычислительные возможности.

4. Задание на дом.

Выучить конспект урока и решить две задачи


Заключение

В данной курсовой работе были выполнены все задачи, обозначенные во введении, благодаря чему авторы достигли поставленной цели – разработки содержания обучения технологии нейронных сетей в профильном курсе информатики.

И, тем не менее, рано говорить о завершенности данного исследования. Результаты данной работы получены теоретически, а особенность влияния изучения темы на мышление школьника носит гипотетический характер. Необходимо апробирование результатов данной работы.

Перед авторами данной работы открываются новые задачи – разработка и проведение эксперимента для подтверждения гипотезы. Только после проведения эксперимента можно будет делать окончательный вывод о практической применимости разработанного содержания обучения технологии нейронных сетей в профильном курсе информатики.


Список литературы

1) Алферов А.Д. Психология развития школьников: Учебное пособие по психологии. – Ростов н/Д: изд-во «Феникс», 2000. – 384 с.

2) Годфруа Ж. Что такое психология: В 2-х т. Т.1: Пер. с франц. – М:. Мир, 1996. – 496 с.

3) Информатика: Учебник. /Под ред. проф. Н.В. Макаровой. – М.: Финансы и статистика, 2000. – 768 с.

4) Концепция профильного обучения на старшей ступени общего образования. – 2002. – 12.

5) Лапчик М.П. и др. Методика преподавания информатики. – М.: Издательский центр «Академия», 2001 – 624 с.

6) Нейронные сети. – http://vlasov.iu4.bmstu.ru/book/neurinf2/index.htm

7) Немов Р.С. Психология: Учеб. для студентов высш. пед. учеб. заведений: В 3 кн. Кн. 1. – М.: Гуманит. изд. центр ВЛАДОС, 1997. – 688 с.

8) Немов Р.С. Психология: Учеб. для студентов высш. пед. учеб. заведений: В 3 кн. Кн. 2. – М.: Гуманит. изд. центр ВЛАДОС, 1997. – 608 с.

9) Солсо Р.Л. Когнитивная психология. – Пер. с англ. – М.: Тривола, 1996. – 600 с.

10) Терехов С.А. Лекции по теории и приложениям искусственных нейронных сетей. – http://alife.narod.ru/lectures/neural/Neu_index.htm

11) Холодная М.А. Психология интеллекта. Парадоксы исследования. – СПб.: Питер, 2002. – 272 с.