Смекни!
smekni.com

Аналогии в курсе физики средней школы (стр. 9 из 11)

Таким образом данная аналогия помогает учащимся лучше разобраться и понять постулаты Бора и энергетическую модель атома.

ГЛАВА 3. Изучение аналогий на факультативах,

кружках и спецкурсах.

§ 8. Волчок и магнит.

Рассмотрим пример, который заключается в запуске волчка. При запуске волчка, мы любуемся его кружением, удивляемся его устойчивости и нам хочется разгадать его тайну. Почему неподвижный волчок не может стоять на острие своей оси, а приведи его в быстрое движение – и, словно перед тобой совсем другой предмет, он стойко держится, вращаясь вокруг вертикальной оси. Мало того, волчок упорно сопротивляется попыткам упорно вывести его из этого положения. Если попытаться толкнуть его, вывести волчок из вертикального положения, опрокинуть, но волчок и после толчка продолжает кружиться, описывая своей осью кони­ческую поверхность (рис. 1).

Рис.1.

Если рассмотреть опыт с вращающейся цепью и заставить ее стоять, как твердый обруч, покажется смеш­ной фантазией, но сообщите цепи быстрое вращение, надев ее на вращающийся шкив, и затем сдвиньте в сторону, дайте ей со­скользнуть на стол, и она «побежит» по столу так же, как если бы была твердым кольцом.

Механика дает объяснение этому удивительному явлению. Для этого надо знать закон сохранения момента импульса. Для вращательного движения справедлив закон сохранения момента импульса: L = Iw=const. где L момент импульса; I — момент инерции, характеризующий инерцию вращательного движения, w — угловая скорость. Только под действием внешних сил, например трения, катящаяся цепочка может уменьшить скорость враще­ния и тогда, потеряв форму, упадет на стол. То же относится и к волчку.

Мы познакомились с одним свойством волчка—сохранением направления оси волчка. Обратимся ко второму важному его свойству. Лучше всего оно обнаруживается в следующем опыте (рис. 2).

Рис.2.

Сплошная латунная шайба К. с утолщенным ободом надета на стальную ось А, вокруг которой она может вращаться внутри латунного кольца . Если намотать на ось шнурок и бы­стро потянуть его, то шайба придет в быстрое вращение. При­лив D на кольце R имеет снизу углубление, которым весь волчок может быть надет на стальное острие штатива. Если при этом не поддерживать прибор рукой, то он под действием силы тяже­сти опрокинется и упадет. Если же, прежде чем убрать руку, привести прибор во вращение, то ось волчка с его кольцами как бы повиснет в горизонтальном положении, причем вся система будет поворачиваться вокруг вертикальной оси штатива. Это вращение получило название прецессии. Прецессия возникла как результат действия силы тяжести и стремления вращающегося волчка сохранять направление оси.

В 1852 г. французский физик Фуко обнаружил, что горизон­тальная ось вращающегося волчка устанавливается в направле­нии север — юг, подобно магнитной стрелке компаса. С той раз­ницей, что ось волчка устанавливается в плоскости географиче­ского меридиана, а стрелка компаса в плоскости магнитного ме­ридиана, который, как известно, не совпадает с географическим.

Объясним это удивительное свойство волчка. Для простоты представим, что наш гироскоп расположен на экваторе в точке А (рис. 3), причем его ось ориентирована с востока на запад. Так как Земля вращается, то через некоторое время точ­ка А перейдет из положения 1 в положение 2. Ось гироскопа, как мы знаем, стремится сохранить прежнее направление, но действие силы тяжести приводит ее снова в горизонтальное по­ложение. Совместное действие силы тяжести и вращения вызы­вает прецессию. Ось поворачивается до тех пор, пока не устано­вится параллельно земной оси, в плоскости меридиана с севера на юг. После этого прецессия прекращается, так как при про­должающемся вращении Земли ось гироскопа будет перемещать­ся параллельно самой себе, а прецессия наблюдается при попыт­ке изменить направление оси. Все вращающиеся тела, например маховые колеса двигателей, стремятся повернуть свои оси по на­правлению к Полярной звезде.


A 1


экватор

2

Рис.3.

Тысячелетиями люди удивлялись чудесным свойствам магни­та, но не могли разгадать его тайну, так как не знали законов волчка и строение атома.

Первое научное сочинение о магнетизме принадлежит англий­скому врачу Гильберту, написавшему в 1600 г. книгу «О магни­те, магнитных телах и большом магните—Земле». Здесь впер­вые уточняется понятие полюсов магнита, а также делается по­пытка понять строение магнита: если разделить магнит на части, то получится множество маленьких магнитов. Следовательно, магнит состоит из множества маленьких магнитиков.

Только в 1785 г. французский военный инженер Кулон, используя изобретенныеим крутильные весы, исследовал взаимо­действие магнитных полюсов и доказал, что оно подчинено зако­ну обратных квадратов, расстояния.

Однако природа магнита продолжала оставаться таинствен­ной. Только аналогия притяжения и отталкивания магнитных полюсов и электрических зарядов наводила на мысль о родстве этих двух явлений. Лишь после обнаружения Эрстедом на опыте действия электрического тока на магнитную стрелку и уточне­ния Ампером законов этого, действия мысль о взаимосвязи элект­ричества и магнетизма была подтверждена. Ампер выдвинул теорию, по которой магнит состоит из маленьких, элементарных круговых токов, но круговой ток. как известно, обладает магнит­ными полюсами (рис. 4). Фарадей и Максвелл разработали учение о магнитном поле.

N


S

Рис.4.

Еще Фарадей установил, что все вещества можно разделить. на две группы — парамагнитных и диамагнитных веществ и что нет материалов, безразличных к магнетизму. Правда, магнитные свойства большинства тел очень слабо выражены и для их обна­ружения приходится воздействовать очень сильными магнитны­ми полями на маленькие и легкие образцы исследуемых мате­риалов. Подвешивая стержень из висмута между полюсами силь­ного электромагнита, можно увидеть, что стержень устанавли­вается перпендикулярно направлению линий индукции магнитного поля, тогда как стержень из алюминия располагается параллельно этим линиям. Висмут диамагнитен, алюминий пара­магнитен (в переводе с греческого пара — значит вдоль, диа — поперек, через).

Лишь в наши дни явления диа- и парамагнетизма получили свое объяснение в электронной теории. Начнем с диамагнетиз­ма. Его происхождение связано с движением электронов вокруг ядра атома по орбите (назовем это движение орбитальным). Электрон, обращающийся вокруг ядра, можно уподобить волчку, и подобно тому как поле тяготения вызывает прецессию волчка, противодействующую силе тяжести, так внешнее магнитное поле вызывает прецессию вращающегося вокруг ядра электрона, про­тиводействующую магнитному полю. Так как в любом атоме лю­бого вещества происходит орбитальное движение электронов, то диамагнетизм свойствен всем видам вещества. Но диамагнитные свойства очень слабы и во многих случаях они перекрываются парамагнитными свойствами. От чего же зависят парамагнитные свойства? Дело в том, что, кроме орбитального движения, элект­ронам присуще еще и вращательное движение вокруг их собст­венной оси. Для наглядности принято сравнивать движение электрона вокруг собственной оси с движением Земли вокруг оси (при одновременном ее движении по орбите вокруг Солнца). Таким образом, электрон уподобляется волчку, и его движение получило название «спин» (от английского глагола tospin — запускать волчок). Надо при этом иметь в виду, что это всего лишь полезный, наглядный образ. Современная физика отказа­лась от представления об электроне, как о каком-то вращающем­ся шарике, однако спин все-таки существует, и мы будем поль­зоваться этим наглядным образом электрона-волчка, обладаю­щего магнитными свойствами.

В зависимости от направления вращения условно различают положительный спин и отрицательный. Два спина с противоположными знаками друг друга «нейтрализуют» (рис. 5).

S


N

N N

S S

Рис.5.

Если каждому электрону с положительным спином соответ­ствует в атоме электрон с отрицательным спином, то магнитные свойства, зависящие от спинов, нейтрализуются и остается лишь магнетизм, зависящий от орбитального движения электронов. Вещества из таких атомов диамагнитны.