Смекни!
smekni.com

Аналогии в курсе физики средней школы (стр. 8 из 11)

§7. Аналогии при изучении постулатов Бора.

Формирование и развитие у учащихся модельных представлений атома как структурной единицы вещества имеет важное научно – познавательное и мировоззренческое значение.

В курсе физики 7 класса учащиеся узнают об атомах как о мельчайших частицах вещества, из которых состоят более крупные образования – молекулы.

В курсе электричества 8 класса картина меняется: модель атома становится доминирующей. Здесь у учащихся формируется представление об атоме как о сложной динамической системе, состоящей из сконцентрированной в небольшом объеме положительной части – ядра и электронов, движущихся относительно ядра и несущих отрицательный заряд.

Планетарную модель атома доказывают опытом Резерфорда по рассеянию α – частиц металлическими пластинками. Известно несколько моделей этого опыта. Например, при описании опыта Резерфорда использована аналогия с зондированием кипы сена с помощью пуль. При этом по траектории пуль можно определить, где спрятаны куски металла.

При рассказе о ядерной модели атома применяютаналогию с солнечной системой. Здесь важны образные сравнения – аналогии: масса ядра атома в несколько тысяч раз больше массы электрона (например, масса ядра атома водорода больше массы электрона в 2000 раз), так же как и масса Солнца больше массы отдельной планеты в несколько сотен тысяч раз (например, больше массы Земли в 333000 раз). Другое сравнение : диаметр ядра примерно в 10000 раз меньше диаметра атома; аналогично, диаметр Солнца (13000 км) во много миллионов раз меньше размеров солнечной системы.

Эти сравнения помогают учащимся создать представление о масштабах ядерной модели атома. Но движение электронов относительно ядра более сложнее, чем орбитальное движение планет и оно подчиняется другим законам. Ядерную модель атома затем используют для объяснения электризации тел, явления электропроводности, при изучении электрического тока в металлах и электролитах. О дальнейшем развитии планетарной модели атома рассказывают после изучения фотоэффекта.

Для объяснения закономерностей фотоэффекта вводят представление о дискретности светового излучения, а также понятие о фотоне как элементарной частице света с энергией Е=hν. Отсюда возникает вопрос: является ли дискретность энергетических состояний свойством, характерным лишь для излучающих твердых тел, или же эта дискретность присуща любым атомным системам?

Подобные рассуждения привели в 1913 году И. Бора к предположению о неприменимости максвелловской электродинамики к электронам, движущимся в атомах. В основу своей теории Н. Бор положил следующие постулаты:

1) в атоме происходят движения электронов по некоторым стационарным круговым орбитам без излучения;

2) стационарными будут те орбиты, для которых момент количества движения электрона mvR равен целому кратному величины h/2π, то есть

mvnRn=nh/2π , где n=1, 2, 3….

3) излучение и поглощение света атомами происходит при переходе электронов с одних стационарных орбит на другие.

Планетарная модель атома в теории Бора “модернизирована”, то есть электроны могут перескакивать с орбиты на орбиту, когда атом переходит из одного стационарного состояния в другое.

Так, при изложении вопроса об излучении света атомом существует аналогия с реальным макропроцессом—вылетом стрелы из лука.

Оба процесса возможны только в том случае, если уча­ствующие в них объекты (атом, лук) нахо­дятся в возбужденном состоянии (в послед­нем случае под «возбуждением» понимается натяжение тетивы). Тетива и атом в конечном счете возвращаются в невозбужден­ное состояние (ему соответствует наименьшее из возможных значение энергии); при этом соблюдается закон сохранения энергии (потенциальная энергия упруго деформиро­ванной тетивы переходит в кинетическую энергию стрелы, а энергия возбуждения ато­ма«уносится» фотоном: Е21=hν.

Однако между этими явлениями есть различие:

1) при натяжении тетивы ей может быть со­общена любая энергия, т. е. ее энергия мо­жет изменяться непрерывно; для возбужде­ния атома ему нужно сообщить определен­ную порцию (квант) энергии, соответствую­щую разности уровней энергии, между кото­рыми осуществляется «переход» электрона в рамках модели Резерфорда—Бора;

2) воз­вращаясь в «невозбужденное» состояние, те­тива «проходит» все промежуточные состоя­ния (значения энергии),, таких состояний, очевидно, бесчисленное множество; электрон же в атоме переходит из любого возбужден­ного состояния в нормальное либо одним, либо несколькими последовательными скач­ками, минуя промежуточные значения энер­гии;

3) стрела, символизирующая световой квант, существовала до возбуждения тетивы и до вылета покоилась относительно лука, при вылете она постепенно набирала ско­рость от нуля до какого-то максимального значения; фотон “рождается” лишь благодаря переходу атома из состояния с большей энергией в состояние с меньшей энергией, т.е. переходу электрона на более низкую орбиту; покоящегося же (относительно любой системы отчета) фотон не существует: фотон сразу приобретает скорость света.

Постулаты Бора дают возможность вычислить полную энергию атома исходя из уравнений:

mvR=nh/2π (1)

(2)

(3)

V=nh/2πmR; n2h2/4π2mR3=Ze2/R2

R=n2h2/Ze22m

E=-

(4) где n =1, 2, 3…..

Полную энергию атома при определенном стационарном состояии называют энергетическим уровнем. Вычисляя значения E при n=1, E при n=2 и т. д., получаем ряд значений энергии:

Е1=-13,53 эВ; Е2=-3,4 эВ; Е3=-1,5 эВ; Е4=-0,8 эВ и т.п.

При n=∞ Е=0.

После вычислений строим график (рис.5.):

Рис.5.

Ось энергии в этом графике берут вертикальной, за начало отсчета выбирают энергию атома, когда его электрон удален в бесконечность – это нулевой уровень энергии атома. Так как энергия атома орбитальна, то все последующие значения энергии будут ниже нулевого уровня. Минимум энергии (E1=-13,53эВ) атома соответствует невозбужденному его состоянию, когда электрон находится на наиболее близкой к ядру орбите. Выбирают масштаб таким образом, чтобы потом легко было разделить отрезок, соответствующий расстоянию между уровнями E и E1 на 4, 9, 16 и т. д., равных частей. Построенное таким образом изображение значений энергии атома в различных его состояниях называют энергетической моделью атома.

Энергетическая модель атома дает ряд объяснений:

а) объяснение происхождения линейчатых спектров.

Линейчатый спектр испускания объясняют переходом атома, находящегося в возбужденном состоянии, с высшего энергетического уровня на более низкий. Например, при переходе со второго энергетического уровня на первый энергия атома уменьшается на Е21=1,77 эВ; при этом испускается фотон света с длиной волны, равной

λ=

Линии поглощения в спектре атома образуются в результате перехода атома с энергетического уровня, соответствующего невозбужденному состоянию атома, на более низкий уровень за счет энергии получаемой из вне. Так как атом обладает вполне определенными, дискретными значениями энергии, то и длины волн излучаемого или поглощаемого света вполне определены. Чем больше разность энергий уровня атома, тем меньшей длины волны испускается свет.

б) Объяснение люминесценции.

Механизм флюоресценции показан на рис.6.

Рис.6.

Фотон с энергией hν15 поглощается молекулой, переводя ее из состояния с энергией Е в возбужденное состояние Е1 . Обратный переход может идти прямо (пунктирная линия) или в виде каскадного процесса, когда испускаются различные фотоны с энергиями hν54 , hν42 , hν21 , причем энергия поглощенного фотона (hν0) может оказаться меньше суммарной энергии испускаемых фотонов (hν) . Часть энергии фотона (А) передается соседним молекулам и затрачивается на различные внутримолекулярные процессы. Поэтому справедливо равенство:

hν = hν0 –A

Откуда ν < ν 0, λ > λ0 ,то есть длина волны испускаемого света при люминесценции меньше длины волны падающего света.

Фосфоресценцию наблюдают в кристаллах, где центрами свечения являются атомы, ионы или группы их. Электрон, возбужденный поглощаемым светом, нередко отделяется от центра свечения. При возвращении электрона на прежнее место свечение возобновляется. Так как скорость перемещения электрона в кристалле мала, то свечение может продолжаться длительное время.

Поэтому при изучении энергетических диаграмм полезно сопоставить их с планетарной моделью Резерфорда – Бора, обратив внимание на важные моменты:

1. В энергетической модели орбит нет, указываются лишь энергии атомов в определенных состояниях.

2. В соответствии с этим речь идет не о перескоках с орбиты на орбиту, а о переходе атомов из состояния с большей энергией в состояние с меньшей энергией (при излучении) или же наоборот (при возбуждении).

3. Расстояние между орбитами имеют геометрический смысл, а между уровнями – энергетический; поэтому говорить о скачках электрона с уровня на уровень недопустимо.