Смекни!
smekni.com

Автоматизированная система распределения мест и оценок качества олимпиадных заданий (стр. 2 из 12)

Второе преимущество – это так называемый «фактор времени». Всем известно, что любая школьная (городская, областная и т.д.) олимпиада – это дело долгое. Сначала участники выполняют задания, потом жюри оценивает их, а далее следует процесс сортировки работ по местам, причем, чем больше участников на олимпиаде, тем больше времени этот процесс занимает. В школе это время небольшое, но в масштабах области или страны это может занять очень много времени. Машина же выполняет этот процесс гораздо быстрее, и время на сортировку можно сократить на порядок, а то и два.

Скажем сразу – полностью автоматизированной системы для проведения олимпиад, их оценки, распределения мест нет, хотя проекты такие существуют. Машина пока может лишь работать с данными, которые в нее вводит человек. В будущем, возможно, будут созданы системы, которые сами будут проверять задания, оценивать их, распределять места и т.д., а человек будет лишь контролировать эту деятельность и пожинать ее плоды.

Вот к чему на данном этапе все стремятся, однако это не так просто как кажется. Поэтому мы остановились на обычной системе, работающей с протоколом, который вводится оператором. Исходя из данных, которые содержатся в этом протоколе, программа получает конечный результат и визуализирует его, но об этом ниже.

Теперь немного теории.

Распределение участников олимпиады по занимаемым местам происхо­дит на заключительной стадии олимпиады. Именно здесь определяются при­зеры, представляемые к награждению, и участники, допускаемые к выходу на следующий этап олимпиады. Отвечает за распределение мест обычно пред­седатель предметного жюри.

Фактическую базу, определяющую распределение мест, образуют итоги олимпиады, отражающие успехи школьников в решении олимпиадных задач. Обычно их представляют в виде (1):

x1, x2, x3, …,xi, …, xn, (1)

где xi= 0, 1, 2, …, m – баллы, набранные участником за задачу с номером i.

Распределение мест непосредственно проводят не по итогам решения от­дельных задач (1), а по некоторым показателям ή1, ή2, ή3, ..., характеризу­ющим выполнение олимпиадного задания в целом:

(ή1, ή2, ή3, ...)=║П║(x1, x2, x3, …) (2)

где ║П║ − некоторые преобразования, переводящие описание итогов олимпиа­ды с языка переменных х1,х2,х3,… (равных набранным баллам за отдельно взятые задачи), на язык показателей ή1, ή2, ή3, ..., характеризующих выпол­нение всего олимпиадного задания.

Показатели ή1, ή2, ή3, ..., определяющие распределение мест, удобно называть показателями приоритета. Одним из таких показателей, как изве­стно, является суммарный балл:

S=х1+х2+х3 + ... + хi+... + хn(3)

В общем, порядок распределения участников соревнования по мес­там при множественном числе показателей приоритета определяется выбо­ром самих показателей ή1, ή2, ή3, ..., их числом l и логикой приоритета, определяющей место участника олимпиады в соответствии с численными значениями показателей ή1, ή2, ή3, ... . С формальной стороны использова­ние нескольких показателей при выстраивании какой-либо одномерной оче­редности объектов не создает больших сложностей. Для этого достаточно один показателей считать «главным», второй − «второстепенным», третий − «третьестепенным» и т.д. При распределении мест главный показатель ή1 следует принимать во внимание в первую очередь, второстепенный ή2 при равенстве главных, а третьестепенный ή3 при одновременном равенстве главных и второстепенных показателей и т.д.

Подобное распределение очень часто используется в спорте. Примером того может служить распределение футбольных команд по итогам чемпионата, которое проводят по двум показателям − по числу набранных очков (главный показатель) и по разнице между забитыми и пропущенными мячами (второстепенный показатель).

Однако это только формальная сторона дела. Вся сложность проблемы заключается в том, что ввести отмеченную иерархию показателей приоритета («главный», «второстепенный» и т.д.) достаточно непросто. Особенность ситуации состоит в том, что формальная логика распределения мест при множе­ственном числе показателей

l≥2(4)

оказывается внутренне противоречивой. Данное противоречие кроется в равноправной возможности двух подходов к распределению мест между участниками олимпиады − одного с ориентацией на большее удаление от «абсо­лютного аутсайдера» (участника, не набравшего ни одного балла), другого с ориентацией на наибольшее приближение к «абсолютному лидеру» (участни­ку, давшему исчерпывающее решение всех задач),

Отмеченное противоречие не имеет места при одном показателе приори­тета ή1. В этом случае каждый участник, набирая баллы по задачам и удаляясь от аутсайдера, неминуемо приближается к лидеру.

Подобная однозначность, как это ни странно, не является достоинством. Достаточно вспомнить, что распределению подвергаются не абстрактныеобъекты, а школьники. Распределение по местам подростков и юношей, отя­гощенных комплексом проблем своего возраста, можно проводить лишь с учетом соображений психолого-педагогического характера, которые по сво­ей сути являются вариативными, зависящими от конкретной ситуации. При одном показателе приоритета условий для подобной вариативности, а соот­ветственно и для дифференцированного подхода нет. Все однозначно опреде­ляется формальной логикой, а соображения психолого-педагогического ха­рактера просто некуда включить.

Однако руководствоваться соображениями только формальной логики нельзя. Данная ситуация представляется чрезвычайно интересной. Ее уникальность заключается в том, что она соответствует условиям, когда необходимо привлечение педагогических соображений к распределению мест. Понятна и роль, отводимая при этом педагогике. Это роль «третейского суда», который в рамках сложившегося противоречия может стать на одну из двух взаимоисключающих точек зре­ния, руководствуясь соображениями педагогической целесообразности.

Ситуация соответствует случаю, когда возможный порядок распределения мест таков, что приоритет численных значений пока­зателя ή1, определяется формальной логикой, а приоритет значений показате­ля ή2 − педагогической целесообразностью. В силу вариативного характера педагогических соображений данное распределение можно провести диффе­ренцированно, меняя точку зрения на приоритет значений ή2 по отношению к каким-то выделенным группам школьников.

Отмеченные «взаимоотношения» показателей ή1 и ή2говорят о логическом главенстве ή1. При распределении мест его необходимо рассматривать в качестве главного показателя и принимать во внимание в первую очередь, а показатель ή2 − в качестве второстепенного и учитывать лишь при равенстве значений ή1.

Приведенные выше соображения говорят о том, что дифференцирован­ный подход к участникам олимпиады в рамках ее регламента вполне возмо­жен. Он может быть реализован лишь на стадии распределения мест, но толь­ко в том случае, когда оно проводится по нескольким показателям приоритета (4). Одного главного показателя ή1, определяющего приоритет выполнен­ного задания с позиций формальной логики, для этого недостаточно. Педаго­гические соображения, обеспечивающие дифференцированный характер рас­пределения мест, могут быть учтены лишь с помощью второго, третьего и других показателей более высокой степени.

Смысл главного показателя приоритета ή1 вполне ясен. Суммарный балл (3) способен испол­нять роль лишь главного показателя приоритета ή1, и в принципе не может служить предметной базой для дифференцированного подхода.

Возможность использования величины ή2= x1x2 (5) в качестве второстепенного показателя приоритета, дополняющего суммарный балл ή1 (4), достаточно очевидна. Если суммарный балл ή1 определяет выполнение задания с количественной стороны, то показатель ή2 (5) характеризует качество выполнения задания. Он показывает, в решении какой из задач (простой или сложной) участник больше преуспел.

Множественный характер показателей приоритета является свидетельством самой возможности дифференцированного подхода. С этой точки зрения соотношение (4) можно рассматривать как необходимое условие, определяющее соответствие используемой системы распределения мест требованиям дифференцированного подхода. Следует отметить, что в условиях рязанских региональных олимпиад условие (4) никогда не выполнялось. Места тради­ционно распределялись с использованием лишь одного показателя приорите­та - суммарного балла S (3), что не дает никаких оснований даже говорить о дифференцированном подходе.

В общепедагогическом плане пренебрежение дифференцированным подходом может вызывать лишь глубокое сожаление. Олимпиада, являясь педа­гогическим мероприятием, должна заниматься не только констатацией спо­собностей участников на момент ее проведения, но и заботиться о создании мотивационной базы для развития скрытых потенциальных возможностей учащихся. В первую очередь, здесь следует обращать внимание на участников, которые выступили на олимпиаде пока еще не совсем удачно. Этих школьни­ков необходимо поддержать и отметить хотя бы самые малые их успехи на олимпиаде, подкрепив все соответствующим поощрением по соображениям педагогического характера. Дифференцированный подход к распределению мест, возможный при выполнении соотношения (4), создает для этого все необходимые условия.