Динамический порядок в движении молекул жидкости некоторые исследователи сравнивают с динамическим порядком в народных танцах: «каждый участник постоянно меняет партнеров, но рисунок танца остается неизменным»[197]. К подобным же представлениям о структуре воды, как уже говорилось, пришел Андерс Нильсон из Стенфордского центра синхротронного излучения, сравнивший воду с танцевальным клубом, часть посетителей которого сидят за столиками, а часть – танцует. Этот же динамический порядок можно сравнить с порядком в расположении отдельных подразделений и отдельных солдат в армии, ведущей боевые действия. С одной стороны может показаться, что перед нами нечто довольно хаотичное и всецело подчиненное логике текущего момента. Но на самом деле этот произвол в большей или меньшей степени лимитирован приказами, поступающими «сверху», от командования. В случае динамического порядка в воде такими «лимитирующими приказами» могут быть внешние воздействия различных физических факторов, в частности, – магнитных полей.
Еще один подход к проблеме «памяти» воды может быть связан с некоторыми следствиями из открытия так называемых гигантских гетерофазных кластеров воды. Об обнаружении этих гигантских кластеров писали уже разные группы исследователей[198], поэтому этой информации, видимо, уже можно доверять.
По литературным данным гигантские гетерофазные кластеры имеют весьма ощутимые по сравнению с гипотетическими обычными кластерами (диаметр которых исчисляется несколькими нанометрами) размеры. Их размеры составляют около 10-5-10-4 м[199], то есть достигают 0, 1 мм, что в тысячи раз больше того, о чем говорят теоретики кластерной гипотезы. Такие гигантские кластеры были обнаружены с помощью лазерного излучения, позволяющего уловить «незначительную разницу в показателях преломления двух микрофаз воды»[200]. Что же касается времени существования этих кластеров, то оно также значительно превышает время существования водородных связей и колеблется в пределах «от одной до десятка секунд»[201]. В научных работах приводятся микрофотографии таких кластеров[202]. При всем этом делается вывод о возможности на этой основе контролировать качество воды и проводить идентификацию минеральных вод[203], поскольку пространственное расположение этих гигантских кластеров и их организация «зависят от химического состава воды»[204]. Некоторые авторы указывают на то, что макроструктурных характеристики этих кластеров – размеры, плотность, вязкость, поверхностное натяжение и другие – «являются чувствительными к воздействиям слабых электромагнитных полей, в том числе вихревой природы»[205]. В литературе также отмечено, что «при температуре 4оС, соответствующей максимальной плотности воды, гигантские гетеротрофные кластеры образуют довольно регулярную укладку»[206]. Все это свидетельствует о способности этих структур неким образом «запечатлевать» в себе определенную информацию о физических воздействиях.
Конечно, время жизни гигантских гетерофазных кластеров – от одной до десятка секунд – недостаточно для обоснования «памяти» воды, если, конечно, не привлекать к этому представлений о существовании и в этой сфере определенного динамического порядка. В то же время в современной научной литературе можно найти сведения о том, что «в природных водах (крупных озерах, морях и океанах) возможно формирование более крупных структур, о чем свидетельствуют первые предварительные результаты»[207].
Однако, возможность существования в естественных водоемах более крупных структурных единиц – далеко не самое интересное в этом вопросе. Весьма примечательно то, что обнаруживаемые экспериментально гигантские кластеры воды, судя по всему, не могут быть чем-то произвольным от гипотетических малых кластеров. И дело здесь не только в том, что время жизни этих структур различается в миллионы миллионов раз. Главная проблема «как следует из современных работ по квантово-химическим расчетам кластеров воды, заключается в существенном различии геометрии малых кластеров воды (до 8 молекул) и непрерывной сетки водородных связей»[208]. Другими словами, перейти от гипотетических малых кластеров к реально наблюдаемым более крупным структурным образованиям воды на основании известных законов физики и химии вряд ли возможно. В литературе по этому поводу можно прочесть следующее:
«При формировании объема воды, как единого ансамбля структурных элементов (в том числе и гигантских гетерофазных кластеров), свойства водной системы не являются простой суммой свойств структурных элементов, но приобретают новое качество»[209](выделено мною – А. Х.).
Этот вывод, независимо от того, в каком соотношении он может находиться с представлениями о «памяти» воды, имеет далеко идущие мировоззренческие следствия. На этом основании можно провести определенную аналогию с тем, что мы встречаем в принципах организации живых существ, где, по мнению многих исследователей, свойства целостного живого организма также не являются «простой суммой свойств структурных элементов» – атомов и молекул. Альтернативная точка зрения – редукционизм – была в различных модификациях весьма распространенной в XIX и первой половине ХХ века, но в последние десятилетия все больше и больше ученых осознают ее несостоятельность.
Кластерная гипотеза «памяти воды» возникла в эпоху расцвета редукционизма и во многом следовала логике этого учения. В современной литературе по поводу редукционного понимания свойств воды можно, к примеру, прочесть следующее:
«Естественно, что при любой структуре воды должны существовать какие-то силы, которые связывали бы отдельные молекулы в некие комплексы и агрегаты, а последние в общую массу того, что называем собственно водой. Подобно тому, как кирпичи какого-либо сооружения связаны цементирующим раствором, так и отдельные молекулы воды связаны друг с другом силами притяжения, называемые, в частности, водородными связями»[210].
Действительно, свойства построенного здания вполне можно предсказать на основании свойств кирпичей, из которых оно сложено и логики их соединения между собой. Однако такой подход уже не срабатывает в случае живого существа – его свойства невозможно предсказать на основании знания о свойствах его молекул и логики их соединения между собой. В живом существе присутствует нечто бόльшее, чем можно предсказать, изучая его молекулы и межмолекулярные взаимодействия. Не исключено, что нечто подобное проявляется и в природе водной стихии. Не зря ведь многие исследователи пишут о принципиальных трудностях, возникающих на пути моделирования в этой области, моделировании, которое подчинено логике редукционного подхода. В частности американский журнал Science еще в 1969 г писал по этому поводу:
«Никакая модель не может объяснить все свойства воды»[211].
Эта ситуация, кажется, сохранилась до сих пор. «В настоящее время существует более 20 обоснованных моделей, но ни одна из них не может объяснить ее аномалии, передать свойства воды и ее структуры в их совокупности. Отсюда несомненно следует, что структура воды – одна из сложнейших проблем современной науки»[212]. Возможно, что эта проблема во многом связана с мировоззренческой установкой современного ученого, в соответствии с которой все удивительные свойства воды «скрыты в строении ее молекулы и межмолекулярной структуре»[213]. Но такой подход, судя по всему, срабатывает не всегда – каждая из моделей, претендующих на описание свойств воды, «достаточно хорошо описывала конкретные, отдельные свойства, но была бессильна при описании других”[214]. В результате часто возникает существенное несоответствие фактов и теории. К примеру, для превращения воды в пар требуется затраты тепла бόльшие, по сравнению с тем, «как это следует из гипотез, для разрушения ее межмолекулярной структуры»[215].
Итак, судя по всему, вода действительно обладает очень тонко организованной структурой, способной реагировать на внешние воздействия различной природы, хотя очень много в этом вопросе еще не ясно. Отражение этих внешних воздействий в различных физико-химических параметрах молекул воды и структуре ее межмолекулярных образований вовсе не означает реализацию редукционного идеала, в соответствии с которым свойства целого сводятся к свойствам его составных частей. Ведь никто не станет отрицать того, что и в случае живых существ их свойства зависят от того, что происходит на молекулярном уровне их тел. Но одно дело – вскрыть зависимость, а другое – свести сущность целого к сущности его составных частей.