Нигматуллин Р. Р.
Производство авиационных газотурбинных двигателей (ГТД) - это сложный, науко- и трудоемкий процесс, требующий строжайшего соблюдения технологической дисциплины, то есть очень внимательного отношения персонала к работе на всех этапах производства. Завершающим звеном этого процесса являются приемо-сдаточные испытания изделия. На стадии испытания определяются основные параметры ГТД, осуществляется индивидуальная для каждого изделия регулировка и настройка агрегатов и выполняются прочие операции, обеспечивающие надежную и продолжительную эксплуатацию двигателя. Поэтому достоверность информации, получаемой в ходе испытания, объективность контролируемых параметров и управляющих воздействий имеют большое, можно сказать ключевое значение для достижения требуемой надежности и долговечности ГТД.
Автоматизированные системы контроля испытаний (АСКИ) являются особым видом автоматизированных систем. Они реализуют информационную технологию в виде определенной последовательности информационно связанных функций, задач или процедур, выполняемых в автоматизированном (интерактивном) или автоматическом режимах. Например, при разработке и испытаниях авиационного ГТД, применение автоматизированной системы контроля испытаний наиболее целесообразно при контроле во время газовой наработки ГТД. Это обусловлено, в первую очередь, тем, что [2 - 4]:
именно в этих работах определяются значения основных показателей работы двигателя;
необходимо минимизировать газовую наработку (без ухудшения качества испытания):
о для снижения расхода топлива;
о для уменьшения влияния вредных факторов на здоровье исполнителей;
о для уменьшения выброса отходов горения топлива в атмосферу;
необходимо снизить влияние субъективного фактора для повышения объективности результатов испытания.
Объективность и достоверность информации может быть обеспечена только в том случае, когда роль субъективного фактора - влияния человека на процесс обмена данными - сводится к минимуму или полностью исключается. Это может быть достигнуто только за счет автоматизации процессов контроля и управления испытаниями, а в конечном итоге, за счет создания системы автоматического управления испытания в целом.
Также работы, выполняемые на остановленном изделии, также должны быть максимально охвачены автоматизированным контролем, поскольку качественная подготовка двигателя к запуску — залог успешного функционирования работающего двигателя.
Большинство экспериментальных стендов оборудовано системами автоматизации испытаний. Такие системы существенно повышают эффективность испытаний, обеспечивают сокращение времени доводки и отладки двигателей за счет ускоренной обработки большого объема измерительной информации, повышения ее точности, обеспечения строгого выполнения программы испытаний, а также за счет повышения безопасности испытаний и предотвращения аварийных ситуаций.
Комплексная автоматизация испытаний серийных ГТД требует знаний и описания закономерностей процессов, протекающих во время испытаний, то есть наличия адекватной математической модели. Кроме того, необходимы специальные математические методы для расчета на компьютере значений параметров быстропеременных процессов в определенные моменты времени или при достижении каких-либо параметров уставных значений.
Немаловажным фактором для повышения надежности и продолжительной эксплуатации ГТД является наличие базы данных парка двигателей, находящихся в эксплуатации. Исходными значениями эксплуатационных показателей являются значения параметров двигателя, полученных в ходе испытаний. Построение статистических зависимостей показателей работы ГТД от наработки изделия и влияния показателей на отказы, сбои в работе и аварии двигателей позволяет прогнозировать поведение изделий в эксплуатации, заранее предотвращать возможные сбои, а также планировать профилактические ремонты, то есть заранее подготавливать производственную базу для быстрого и качественного ремонта двигателей. Таким образом, высокая объективность и достоверность результатов испытаний позволяет существенно улучшить эксплуатационные характеристики двигателей.
Следует отметить, что надежность и продолжительность срока эксплуатации двигателя имеют прямое влияние на гуманитарно-социальные и экономические стороны не только производства, но и развития социума в целом. Увеличение срока службы изделия приводит к снижению эксплуатационно-производственных затрат на единицу времени эксплуатации, что позитивно сказывается как на экономических показателях эксплуатационных авиаслужб, так и на аналогичных показателях производителей авиатехники. Надежность двигателей сказывается не только на экономических показателях, но, в первую очередь, обеспечивает безопасность полетов и может предотвратить невозвратимые потери - человеческие жизни.
Помимо социальных и экономических аспектов, автоматизация испытаний ГТД позволяет улучшать экологическую обстановку. Снижение времени испытаний, уменьшение расхода топлива - это прямые факторы, снижающие загрязнение окружающей среды за счет внедрения АСКИ. Кроме этого, есть еще и опосредованные факторы, такие как снижение количества аварий ГТД в эксплуатации, приводящих к экологическим катастрофам, улучшение показателей работы двигателей - увеличение полноты сгорания топлива, снижение уровня шума изделия - за счет комплексного, объективного контроля. Таким образом, разработка и внедрение АСКИ ГТД серийного производства весьма актуальны и должны находить свое решение в полном объеме и в кратчайшие сроки.
Рассмотрим основные особенности работы систем автоматизации испытаний на основе данных, приведенных в [1]. Автоматизированная система испытаний двигателя объединяет в один комплекс автоматизированную информационно-измерительную систему (АИИС) и автоматизированную систему управления (АСУ) и образует автоматизированную систему управления технологическим процессом испытания - АСУПП-И. Как правило, системы автоматизации испытаний строятся на базе персональных компьютеров (ПК).
На АСУТП-И возлагается выполнение следующих основных задач.
Автоматическая защита двигателя путем его останова или перевода на пониженный режим работы в случае возниконовения нештатных ситуаций.
Сбор и обработка измерительной информации, представление ее в требуемой форме (таблицы, графики, протоколы и т.д.) на различных носителях информации (цифропечать, магнитные диски и ленты и др.), а также представление текущей информации на экране ПК: градуировка измерительных каналов и определение их метрологических характеристик.
Автоматическое поддержание заданного режима работы двигателя.
Автоматическое управление двигателем по определенной программе (например, по циклической программе при проведении эквивалентно-циклических испытаний) с автоматическим измерением заданных параметров на установленных программой режимах.
Автоматическое руководство в форме диалога «оператор-испытатель - ЭВМ» процессом испытаний, включая эксплуатацию и обслуживание двигателя и стендовых систем.
Анализ тенденций изменения параметров двигателя в проуессе испытаний с выдачей полной информации.
Хронометраж работы двигателя на различных режимах, учет количества запусков, прокруток, остановов за испытание с выдачей информации по требованию, с внесением параметров хронометража в документы двигателя.
Автоматическое ведение протокола испытаний.
Рис. 1. Структурная схема автоматизированной системы испытаний двигателей
В состав системы входят:
объект испытаний - воздушно-реактивный двигатель (ВРД);
комплекс первичных измерительных преобразователей (ПИП) и первичных преобразователей системы контроля (ППСК);
устройство связи с объектом (УСО), обеспечивающее преобразование всех форм сигналов первичных преобразователей (аналоговых и частотных) в цифровой код, а также преобразование цифровой информации, выдаваемой компьютером, в сигнал-команду для действия исполнительных механизмов (ИМ);
Персональный компьютер (ПК) со средствами отображения информации (дисплеем (Д_ и принтером (П)) и клавишным устройством (КУ);
пульт управления (ПУ), включающий в себя органы управления двигателем (рычаг управления двигателем (РУД), рычаг останова двигателя (РОД), тумблеры, кнопки, клавиши) и пульт визуального контроля (ПВК).
При наличии автоматической системы управления испытаниями ПВК содержит минимальное количество приборов контроля работы двигателя: индикаторы частот вращения роторов, давления масла, температуры газа за турбиной, температуры масла на выходе из двигателя и т.д.
Автоматическая система управления испытаниями должна удовлетворять ряду жестких требований по надежности и сохранению информации в случаях непредвиденных сбоев в процессе испытаний. Так, несанкционированное отключение основного источника питания не должно приводить к отключению АСУ и прерыванию испытаний. В случае аварийного останова двигателя должна сохраняться вся информация на интервале времени не менее 60 с до и после выдачи команды на останов. При сбоях в работе измерительных каналов на экран ПК должна выдаваться информация о причинах, вызвавших сбой. Комплекс технических средств АСУТП-И должен быть совместим со штатной электронной бортовой системой контроля двигателя с целью непрерывного слежения за ее работой.
Особое внимание при создании систем автоматизации испытаний уделяется защите двигателя. Недопущение разрушения в случае возникновения дефекта с сохранением зафиксированной информации позволяет получить весьма важные данные для его последующей доводки, не говоря о предотвращении расходов средств на ремонт двигателя или даже на производство дополнительного экземпляра.