Смекни!
smekni.com

Векторный электромагнитный потенциал - это первичное истинное поле частиц микромира (стр. 1 из 5)

Векторный электромагнитный потенциал - это первичное истинное поле частиц микромира

В.В. Сидоренков, МГТУ им. Н.Э. Баумана

Фундаментальность закона Природы «корпускулярно-полевого дуализма Материи» состоит в том, что как две стороны одной медали электромагнитные локальные характеристики микрочастицы и ее собственные полевые параметры неразрывно связаны и обусловлены друг другом: электрическому заряду, кратному кванту электрического потока - заряду электрона, соответствует электрический векторный потенциал, а удельному (на единицу заряда) моменту, кратному кванту магнитного потока, отвечает магнитный векторный потенциал.

Полевая концепция природы электричества является фундаментом классической электродинамики и основана на признании того факта, что взаимодействие разнесенных в пространстве электрических зарядов осуществляется посредством электромагнитных полей. Физические свойства таких полей взаимодействия математически описываются системой функционально связанных между собой уравнений в частных производных первого порядка, называемых электродинамическими уравнениями Максвелла [1, 2]. В структуре этих уравнений, описывающих поведение электромагнитного поля в неподвижной среде, заложена аксиома классической электродинамики - неразрывное единство переменных во времени электрического и магнитного полей. В современной форме такая система дифференциальных уравнений имеет следующий вид:

(a)

, (б)
, (1)

(в)

, (г)
.

Здесь соответственно поля: векторов электрической

и магнитной
напряженности, электрической
и магнитной
индукции, плотности электрического тока
; абсолютные
и
- электрическая и магнитная проницаемости,
- удельная электрическая проводимость материальной среды, а
- объемная плотность стороннего электрического заряда.

Важнейшим фундаментальным следствием уравнений Максвелла является тот факт, что

и
компоненты электромагнитного поля распространяются в пространстве в виде волн. Например, из (1а) и (1в) сравнительно просто получить волновое уравнение для поля электрической напряженности
:

. (2)

Аналогично получается и уравнение волн поля магнитной напряженности

, структурно тождественное уравнению (2). Видно, что скорость распространения этих волн определяется только лишь электрическими и магнитными параметрами пространства материальной среды:
,
и
. В частности, в отсутствие поглощения (
) их скорость распространения
, а колебания
и
компонент волн, согласно структуре уравнений (1), синфазны.

С целью ответа на вопрос, что переносят эти волны, воспользуемся уравнениями Максвелла (1), являющимися, в сущности, первичными уравнениями электромагнитной волны, откуда на основе уравнений (1а) и (1в) получаем закон сохранения энергии в форме, так называемой теоремы Пойнтинга:

. (3)

Видно, что поступающий извне в данную точку среды поток электромагнитной энергии за единицу времени (мощности), определяемый вектором Пойнтинга

, идет на компенсацию джоулевых (тепловых) потерь в процессе электропроводности и изменение электрической и магнитной энергий, либо наоборот (3) - эти физические процессы вызывают излучение наружу потока электромагнитной мощности. При этом совокупное наличие в пространстве
и
полей вызывает отклик материальной среды в виде векторного поля объемной плотности электромагнитного импульса:
. Экспериментальное открытие импульса электромагнитного поля (давление света) [3] принадлежит русскому ученому-физику П.Н. Лебедеву (1899г.).

Однако наряду с этим, следует указать на весьма ограниченный диапазон явных возможностей уравнений Максвелла при описании ряда известных в настоящее время явлений электромагнетизма. В частности, уравнения (1) не могут вскрыть и адекватно описать физическую суть магнитных явлений, поскольку известно [2], что истинный магнетизм – это спиновый магнетизм. Например, они в принципе не способны объяснить эффект Эйнштейна-де Гааза [1, 2], когда в материальной среде при ее однородном намагничивании возникает механический момент вращения, направленный коллинеарно подмагничивающему полю магнитной индукции

. Так же далеко не ясен вопрос о существовании и физической реализации момента импульса электромагнитного поля, соответственно, переносящих его волн.

Здесь как бы существует парадокс, где с одной стороны, теория Максвелла предсказывает равенство нулю момента импульса плоской электромагнитной волны, а, с другой, физически понятно, что электромагнитное излучение – это излучение возбужденными атомами избытка энергии в виде фотонов, которые будут забирать от атома не только часть энергии, но и уносить долю внутреннего углового момента атома. Следовательно, распространяющееся в виде волн электромагнитное поле должно обладать вполне определенной величиной момента импульса, что, кстати, наблюдалось в экспериментах [4, 5].

Таким образом, принципиальный дефект традиционной классической электродинамики в том, что в ее представлениях об электрическом заряде и его поле отсутствует понятие о спине (собственном моменте импульса). Ссылки на ныне существующую квантовую электродинамику [2] неуместны, поскольку это отдельная самостоятельная наука, по сути несвязанная с классической теорией. Правда, известны попытки введения в электродинамику так называемого классического спина [6], но и они оказались неконструктивными.

К сожалению, несмотря на серьезную методическую модернизацию исходных максвелловских уравнений Герцем, Хевисайдом и Эйнштеном и грандиозные успехи внедрения достижений электромагнетизма во многих областях жизни современного человеческого общества, общепринятая на сегодня теория электромагнитного поля и поныне базируется только лишь на представлениях 19 века о физических свойствах электрического заряда материальных тел. Для аргументированной иллюстрации данного факта здесь вполне достаточно двух первичных фундаментальных соотношений электромагнетизма - закона Кулона силы взаимодействия неподвижных точечных электрических зарядов и закона сохранения электрического заряда [1], чтобы цепочкой последовательных физико-математических рассуждений построить традиционную систему (1) уравнений электродинамики Максвелла [7].

Но это только то, что лежит на поверхности. Если взглянуть глубже, то те же дивергентные уравнения системы (1) содержат сведения о полях электрического

и магнитного
векторных потенциалов, физический смысл которых, несмотря на вполне определенный прогресс в установлении их физической значимости [8], и по сей день концептуально не понят, а потому в теории электромагнетизма эти не наблюдаемые напрямую поля остаются в должной мере непринятыми и, в сущности, неиспользуемыми. Попытаемся еще раз разобраться в этом вопросе, для чего воспользуемся обсуждаемой здесь системой уравнений (1).

Представления о векторных потенциалах определяются очевидным положением о том, что дивергенция ротора любого векторного поля

тождественно равна нулю:
. Поэтому магнитную компоненту векторного потенциала
можно ввести посредством соотношения
системы уравнений (1), описывающим магнитную поляризацию (намагниченность) материальной среды, а электрическую компоненту
- соотношением
, описывающим поляризацию локально электронейтральной (
) среды: