Эти корпускулярно-полевые представления аргументированно подтверждаются также и непосредственным следствием в виде соотношения (6) связи электрического векторного потенциала
и магнитной напряженности с единицей измерения Ампер/метр, представляющего собой полевой эквивалент полного электрического тока: токов проводимости и смещения , величина (сила тока) которого имеет единицу измерения Ампер.Перейдем теперь к магнитному векторному потенциалу
. Поскольку вектор электрической напряженности измеряется в СИ Вольт/метр, либо формально математически (но не физически) тождественно Ньютон/Кулон, то, согласно соотношению (5) связи магнитного векторного потенциала с вектором , единица измерения вектора будет (Ньютон·сек)/Кулон, то есть имеет размерность импульс на единицу заряда. Данная размерность магнитной компоненты векторного потенциала в настоящее время считается общепринятой и вполне очевидной, поскольку совместно со скалярным электрическим потенциалом весьма заманчиво представить полевой аналог четырехвектора «энергии-импульса», так в виде называемого 4х – потенциала.Следовательно, соотношение (5) можно, казалось бы, назвать полевым аналогом уравнения динамики поступательного движения в механике (II закон Ньютона). Действительно, указанную размерность магнитного векторного потенциала, другими словами, его физический смысл находят (например, в работе [10]) при анализе действия вихревого поля вектора
на точечный электрический заряд посредством именно II закона Ньютона, обычного механического. Однако, по нашему мнению, обобщать выводы, полученные в рамках уравнения динамики поступательного движения для точечного заряда на случай макрообъекта (совокупности точечных зарядов), находящегося в вихревых полях: с физической точки зрения, мягко говоря, весьма сомнительно.Для прояснения сложившейся ситуации рассмотрим далее соотношение (6а), которое представим в интегральной форме:
. (9)Видно, что величина циркуляции вектора
по контуру С определяется магнитным потоком через поверхность SC и имеет единицу измерения в системе СИ Вебер = (Джоуль∙секунда)/Кулон, что соответствует модулю момента импульса на единицу электрического заряда. При этом, согласно (9), размерность магнитного векторного потенциала может быть двоякой: либо указанная выше общепринятая импульс на единицу заряда, либо ей альтернативная линейная плотность момента импульса на единицу заряда. Конечно, с формальной точки зрения обе размерности вектора , выраженные через единицы измерения, математически тождественны, но физически это принципиально различные величины.Целесообразно отметить, что сам Максвелл призывал ответственно относиться к математическим операциям над векторами электромагнитного поля и физической трактовке таковых. Вот его слова: “В науке об электричестве электродвижущая и магнитная напряженности принадлежат к величинам первого класса – они определены относительно линии. … Напротив, электрическая и магнитная индукция, а также электрические токи принадлежат к величинам второго класса – они определены относительно площади.” ([9] п. 12). И далее конкретно: “В случае напряженности следует брать интеграл вдоль линии от произведения элемента длины этой линии на составляющую напряженности вдоль этого элемента. … В случае потоков следует брать интеграл по поверхности от потока через каждый ее элементов.” ([9] п. 14).
Не преувеличивая, трактат Максвелла [9] можно назвать «Библией электромагнетизма» и физическими основами математического анализа, однако даже в учебной литературе повсеместно встречаются физически бессмысленные математические выражения “div
” и “rot ”. Такое формальное использование математики создает путаницу понятий и попросту мешает действительно разобраться в физическом содержании соотношений электродинамики. Это усугубляется и абсолютной системой единиц СГС, когда безразмерные коэффициенты e0 = 1 и m0 = 1 делают векторы и , и физически тождественными, где Эрстед и Гаусс равны в пустоте, а в средах различаются только численно.Итак, согласно Максвеллу, в электродинамике линейные (циркуляционные) векторы
и имеют размерность линейной плотности физической величины, а потоковые векторы , и – ее поверхностной плотности. В частности, размерность вектора магнитной индукции равна поверхностной плотности момента импульса на единицу заряда, в системе СИ - Тесла. Экспериментально это наглядно иллюстрируется эффектом Эйнштейна-де Гааза, где в материальной среде при ее однородном намагничивании возникает механический момент вращения, направленный коллинеарно полю, обусловленный упорядочением собственных магнитных моментов, соответственно, моментов импульса электронов в атомах вещества среды. Следовательно, поле вектора - это поле момента импульса среды, порождающее ее вращение. Поэтому в соотношении (4а) размерностью вихревого поля магнитного векторного потенциала является линейная плотность момента импульса на единицу заряда.В итоге, согласно формулам (9), локальной характеристике микрочастицы - моменту импульса на единицу заряда сопоставляется его полевой эквивалент - магнитный векторный потенциал
с размерностью линейной плотности момента импульса на единицу заряда. что дает вторую фундаментальную корпускулярно-полевую пару: для электрона - с единицами измерения (Джоуль∙секунда)/Кулон (Джоуль∙секунда)/(Кулон∙метр).Вернемся к соотношению (5) связи вектора
с вектором . Как теперь показано, размерность вихревого поля вектора электрической напряженности однозначно равна линейной плотности момента силы на единицу заряда с единицей измерения в СИ (Ньютон∙метр)/(Кулон∙метр), что естественно нисколько не опровергает традиционную единицу измерения этой величины Вольт/метр, а лишь уточняет ее физический смысл. Таким образом, в действительности соотношение (5) является полевым аналогом основного уравнения динамики вращательного движения твердого тела, что логически соответствует рассмотренным выше корпускулярно-полевым представлениям.Подводя предварительный итог, приходим к заключению, что установленная здесь принципиальная двойственность физических параметров электрического заряда говорит о реальном существовании фундаментального «корпускулярно-полевого дуализма» природы электричества, кстати, схожего по названию с «корпускулярно-волновым дуализмом» в квантовой механике. Формально и здесь и там имеем неразрывную взаимосвязь материи с ее пространственно-временным собственным полем. Однако их сущностные различия принципиальны: корпускулярно-полевой дуализм реализуется на микро- и макроуровнях строения Материи и основан на объективном единстве частицы материи и ее собственного первичного векторного поля в реальном пространстве физического вакуума, что в свою очередь неразрывно связано с реально наблюдаемым обычным традиционным электромагнитным полем, а в концепции корпускулярно-волнового дуализма микрочастица представляется скалярной волной вероятности в абсолютно пустом, абстрактном пространстве.