Смекни!
smekni.com

Построение и анализ уравнений гравитационного поля (стр. 1 из 3)

Построение и анализ уравнений гравитационного поля

В. В. Сидоренков, МГТУ им. Н.Э. Баумана

На основе концепции «корпускулярно-полевого дуализма Материи» в виде тождества кинематических характеристик локализованного в пространстве материального тела и гравитационного поля, создающего такие характеристики при полноправном включении в теорию векторного гравитационного потенциала построены уравнения гравитационного поля, в соответствии с которыми скорость распространения волн гравитации в точности равна скорости света в физическом вакууме.

На пути дальнейшего развития наших знаний о первичных процессах и основах мироздания рассмотрим весьма загадочный и очень давний закон всемирного тяготения [1], которому уже более трехсот лет. Исследование характеристик явления гравитационного взаимодействия материальных тел является фундаментальной и до настоящего времени по существу нерешенной задачей физической науки. В частности, на сегодня нет ясности в вопросе о возможности существования в Природе волн гравитации и скорости их распространения. Рассматриваемый здесь закон всемирного тяготения – это закон феноменологический и аналитически описывается эмпирическим выражением действия силы гравитационного притяжения между двумя материальными телами массой

и
, находящихся на некотором расстоянии
друг от друга:

. (1)

Отметим, что ни сама зависимость (1), ни ее параметры никоим образом не объясняют физический механизм описываемого этой формулой явления. При этом силы в обсуждаемом законе

действуют по линии, соединяющей центры масс взаимодействующих тел, а потому такие силы называют центральными. Напомним кстати, что «Сила – векторная физическая величина, вызывающая изменение скорости тела либо его деформацию». Соответственно «Центр масс тела – это точка, приложение силы к которой вызывает только поступательное движение этого тела».

Поскольку указанное взаимодействие происходит в пространстве физического вакуума, которое, согласно современным исследованиям, пустотой в буквальном смысле этого слова быть не может, то физическую постоянную

в формуле (1) будем называть гравитационной проницаемостью вакуума. Данная константа получается из постоянной гравитационного взаимодействия [1], записанной в виде соотношения, в системе физических единиц СИ равного
. По нашему мнению, будет весьма полезным для дальнейшего провести детальное обсуждение размерности и единиц измерения указанной выше фундаментальной физической константы
и связанной с ней других физических величин.

Итак, рассмотрим

- гравитационную проницаемость вакуума, где в числителе единиц измерения этой константы физическая величина, определяющая гравиемкость
, названная нами Галилей (аналог электроемкости:
- Фарад, где
- электрический заряд,
- скалярный электрический потенциал) и равная отношению основных физических величин: Гл = кг
сек2/метр2. Как видим,
представляется отношением величин гравитационного заряда (массы) «кг» к скалярному гравитационному потенциалу «Джоуль/кг=метр2/сек2», то есть
. Указанный потенциал потому измеряется в «Джоуль/кг = v2», так как определяется работой по перемещению единичной массы из данной точки поля на бесконечность, а потому измеряется в «Джоуль/кг = v2». Согласно определению потенциала, в области своего существования
принципиально отрицателен и достигает в центре поля физически возможного минимума
Дж/кг, соответственно на бесконечности максимален и равен нулю. В частности, на поверхности Земли данный потенциал составляет величину
Дж/кг, что соответствует квадрату первой космической скорости:
м/c [1].

Логически очевидно, что все наши рассуждения, касающиеся гравитационной константы

, полностью физически последовательно тождественны результатам анализа других фундаментальных констант
и
, которые мы называем [2] соответственно электрической и магнитной проницаемостями вакуума, входящих в законы Кулона электрического и магнитного взаимодействия материальных тел в пространстве физического вакуума. При этом сразу отметим, что здесь не ставится задача пойти проторенным путем многочисленных, по существу, безуспешных попыток объединения электромагнитных и гравитационных взаимодействий посредством прямого сведения гравитации к электромагнетизму, не говоря уже об экзотике: объединения их на базе общей теории относительности. Наш же подход – это на основе полученных в работе [2] результатов воспользоваться далее концепцией современных представлений в теории электромагнетизма [3], базирующихся на полноправном включении в электромагнитную теорию векторных потенциалов с целью применения этой концепции к аналогичному описанию, но уже гравитационных явлений.

Для построения уравнений гравитационного поля, подобно полю электрическому или магнитному [1], введем понятие векторного поля гравитационной напряженности, то есть силы гравитации на единицу массы:

. (2)

Данное, казалось бы, тривиально очевидное соотношение наглядно иллюстрирует фундаментальный закон Природы «корпускулярно-полевой дуализм Материи», поскольку ускорение тела массы

под действием силы описывается в механике уравнением динамики поступательного движения
, а потому как две стороны одной медали вектор механического ускорения
материального тела массой
тождественно равен в данной точке векторному полю гравитационной напряженности, создающей это ускорение:
. При этом единица измерения ускорения материального тела
равна в системе СИ
, а, согласно определению напряженности потенциального поля
измеряется в
. Конечно математически эти единицы измерения тождественны, но здесь идет речь о физически различных величинах. А это и есть проявление корпускулярно-полевого дуализма Материи, где присутствует тождество характеристик движения локализованного в пространстве материального тела и гравитационного поля, создающего такие характеристики, либо наоборот, характеристики поля гравитации регистрируются посредством кинематических параметров тела в этом поле.

Таким образом, размерность векторного поля гравитационной напряженности

есть линейная плотность скалярного гравитационного потенциала, что структурно и физически тождественно размерностям аналогичных векторов электрической
и магнитной
напряженностей - линейной плотности соответственно электрического и магнитного скалярного потенциалов.

Покажем как можно получить систему дифференциальных уравнений гравитационного поля, где основой наших рассуждений будет тот факт, что функционально поле

. То есть с учетом конкретной аналитики соотношения (2) имеем гравитационный аналог электростатической теоремы Гаусса [1] - теорему Гаусса для поля гравитации
где поток векторного поля
через произвольную замкнутую поверхность
равен массе в объеме
внутри этой поверхности.