Таким образом, окончательно получаем систему уравнений гравитационного поля, представляющую собой систему дифференциальных уравнений первого порядка относительно двух векторных функций
a)
c)
Интересно, что структурно система уравнений (4) весьма необычна и совершенно не коррелирует с системой уравнений электродинамики Максвелла [1]. Если говорить более конкретно, то уравнения относительно гравитационной напряженности
Возникает теперь законный вопрос о правомерности знаков при временных производных в уравнениях (4а) и (4c). На эти вопросы проще всего и нагляднее можно ответить, записав эти по сути дела волновые уравнения в конкретном виде для волн, распространяющихся, например, вдоль положительного направления оси 0X, при конкретно ориентированных векторах компонент гравитационного поля, а именно
Тогда, расписав уравнения (4а) и (4c) согласно условию поставленной выше задаче, в итоге получим
где константа
Итак, проверка показала, что представленные уравнения гравитационного поля (4а) и (4c) действительно верны и являются уравнениями гравитационной волны с взаимно ортогональными векторными компонентами гравитационной напряженности
Как и ожидалось, уравнения (4а) и (4c) посредством соотношения энергетического баланса отвечают также на физически принципиальный вопрос, что же переносят волны гравитационного поля? Следуя расчету, имеем
Видно, что соотношение энергетического баланса (5) характеризует в данной точке пространства объемную плотность механической энергии (слагаемые слева), изменение которой определяет транспорт в окружающее пространство объемной плотности потока вектора поверхностной плотности энергии (дивергентное слагаемое). Таким образом, система уравнений гравитационного поля (4) действительно физически содержательна и перспективна, а потому требует в дальнейшем серьезного изучения, а следующее из нее соотношение энергетического баланса (5) представляет собой гравитационный аналог широко известной теоремы Умова-Пойнтинга [1].
Соответственно можно получить систему дифференциальных уравнений гравистатики, где основой наших рассуждений будет то, что в статическом случае поле
a)
c)
Здесь уравнение (6a) определяет условие потенциальности векторного поля
Построенная система уравнений статического гравитационного поля (6) позволяет также получить соотношение энергетического баланса, а именно
Видно, что соотношение энергетического баланса характеризует в данной точке пространства объемную плотность механической энергии (слагаемое слева), которая принципиально определяется транспортом извне объемной плотности гравитационного потока (дивергентное слагаемое), либо наоборот (7), источник энергии гравитации создает гравитационный поток наружу. Следовательно, система уравнений гравистатики (6) также физически содержательна, а следующее из нее соотношение энергетического баланса (7) представляет собой статический аналог гравитационной теоремы Умова-Пойнтинга.
Резюме. На основе концепции «корпускулярно-полевого дуализма Материи» в виде тождества кинематических характеристик локализованного в пространстве материального тела и гравитационного поля, создающего такие характеристики при полноправном включении в теорию векторного гравитационного потенциала построены системы динамических и статических уравнений гравитационного поля. При этом установлено, что гравитационное поле принципиально реализуется неразрывной совокупностью двух векторных полей, а именно, вектора гравитационной напряженности и гравитационного векторного потенциала. В рамках указанных уравнений однозначно показано: скорость распространения волн гравитации в точности равна скорости света в физическом вакууме, что подтверждает выводы основополагающей работы [2] о Едином поле силового пространственного взаимодействия материальных тел.
Список литературы
1. Физический энциклопедический словарь / Гл. ред. А.М. Прохоров. - М.: Советская энциклопедия, 1983.
2.
3.