1. Основные этапы развития биотехнологии. Характеристика эры антибиотиков.
Биотехнология – это область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуществляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах[1].
Действительно, она включает на первый взгляд, совершенно не связанные между собой разделы научных знаний: микробиологию, анатомию растений и животных, биохимию, иммунологию, клеточную биологию, физиологию растений и животных, различные систематики, экологию, генетику, биофизику, математику и много других областей естествознания.
Постоянно увеличивающееся разнообразие современной биологии началось после окончания второй мировой войны, когда в биологию внедрились другие естественнонаучные дисциплины, такие как физика, химия и математика, которые сделали возможным описание жизненных процессов на новом качественном уровне - на уровне клетки и молекулярных взаимодействий.
Именно существенные успехи в фундаментальных исследованиях в области биохимии, молекулярной генетики и молекулярной биологии, достигнутые во второй половине текущего столетия, создали реальные предпосылки управления различными (пусть, возможно, и не самыми главными) механизмами жизнедеятельности клетки. Сложившаяся благоприятная ситуация в биологии явилась мощным толчком в развитии современной биотехнологии, весьма важной области практического приложения результатов фундаментальных наук. Можно с уверенностью утверждать, что биотехнология является наиболее разительным примером того, как результаты, казалось бы "чистой науки", находят применение в практической деятельности человека. Основой, обеспечивающей благоприятную ситуацию для бурного развития биотехнологии, явились революционные открытия и разработки:
Доказательства роли нуклеиновых кислот в хранении и передаче наследственной информации в биологических системах (имеются в виду индивидуальные клетки и отдельные организмы, а не их популяции);
Расшифровка универсального для всех живых организмов генетического кода;
Раскрытие механизмов регуляции функционирования генов в процессе жизни одного поколения организмов;
Совершенствование существовавших и разработка новых технологий культивирования микроорганизмов, клеток растений и животных; как логическое следствие из вышесказанного, явилось создание (возникновение) и бурное развитие методов генетической и клеточной инженерии, с помощью которых искусственно создаются новые высокопродуктивные формы организмов, пригодные для использования в промышленных масштабах.
Расшифровка генома человека.
Абсолютно новым направлением является так называемая инженерная энзимология, возникшая вследствие развития современных методов изучения структуры и синтеза белков-ферментов и выяснения механизмов функционирования и регуляции активности этих соединений (важных элементов клетки). Достижения в этой области позволяют направленно модифицировать белки различной сложности и специфичности функционирования, разрабатывать создание мощных катализаторов промышленно ценных реакций с помощью высоко стабилизированных иммобилизованных ферментов.
Все эти достижения вывели биотехнологию на новый уровень ее развития, позволяющий сознательно и целенаправленно управлять сложными клеточными процессами. Данная новая область биологических знаний и ее последние достижения уже стали крайне важными для здоровья и благополучия человека.
И все же, что ожидает биотехнологию в случае реализации всех надежд, которые на нее возлагаются? И, наконец, что же такое биотехнология и каковы ее направления деятельности?
Термин "биотехнология" был введен в 1917 г. венгерским инженером Карлом Эреки при описании процесса крупномасштабного выращивания свиней с использованием в качестве корма сахарной свеклы. По определению Эреки, биотехнология – это "все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты".
Биотехнология на самом деле не что иное, как название, данное набору технических приемов (подходов) и процессов, основанных на использовании для этих целей биологических объектов.
Термин биотехнология включает составляющие "биос ", "техне ", "логос " греческого происхождения (от греч. "биос " – жизнь, "техне " – искусство, мастерство, умение и "логос " – понятие, учение)[2].
Биотехнологические направления имеют своей целью создание и практическое внедрение (т. е. практическое использование) активных веществ и лекарственных препаратов, кормовых добавок, средств защиты и т.д. Однако следует отдавать себе отчет в том, что биотехнология не является чем-то новым, ранее не известным, а представляет собой развитие и расширение набора технологических приемов, корни которых появились тысячи лет тому назад. Биотехнология включает многие традиционные процессы, давно известные и давно используемые человеком. Это пивоварение, хлебопечение, изготовление вина, производство сыра, приготовление многих восточных пряных соусов, а также разнообразные способы утилизации отходов. Во всех перечисленных процессах использовались биологические объекты (пусть даже без достаточных знаний о них), и все эти процессы на протяжении многих лет совершенствовались, правда, эмпирически. Начало этого этапа биотехнологии теряется в глубине веков, и он продолжался примерно до конца XIX в.
Работы великого французского ученого Луи Пастера (1822-1895) заложили фундамент практического использования достижений микробиологии и биохимии в традиционных биотехнологиях (пивоварение, виноделие, производство уксуса) и ознаменовали начало нового, научного периода развития биотехнологии. Для этого периода характерно развитие промышленной биотехнологии, в особенности ферментационных процессов в промышленных масштабах. Были разработаны стерильные процессы производства путем ферментации ацетона, глицерина. Интенсивно изучаются основные группы микроорганизмов – возбудителей процессов брожения, исследуются биохимические особенности данных процессов.
Вторая половина XX-го века является эрой антибиотиков, которые занимают ведущее место в современной химиотерапии бактериальных инфекций и онкологических заболеваний. Использование антибиотиков в медицине способствовало успеху борьбы с тяжелыми инфекциями и в целом прогрессу медицины, демографическим "взрывам" и увеличению продолжительности жизни.
Создание антибактериальных препаратов является одним из наиболее важных достижений ХХ века. Пенициллин, синтезированный более 60 лет назад, открыл новую эру в борьбе с инфекционными болезнями. Сегодня известно около 20 групп антибиотиков, которые продаются под 1000 торговых наименований. Без них невозможно представить себе современную медицину, благодаря им спасены миллионы человеческих жизней. Эволюция создания антибактериальных препаратов во многом отражает уровень развития общества, возможности научно технического прогресса.
Что такое антибиотики? Это вещества, избирательно подавляющие жизнедеятельность микробов. Антибактериальные средства подразделяют на природные, являющиеся продуктами жизнедеятельности микроорганизмов, и получаемые искусственным путем в результате химического синтеза, – так называемые полусинтетические. Как следует из определения, антибиотики активны только в отношении микроорганизмов и грибов. Они не действуют на вирусы. Антибиотик и микроорганизм – это две противоборствующие силы. Изобретатели антибиотиков каждый раз придумывают все более изощренные методы уничтожения микробов, а микробы, эволюционируя, создают порой уникальные, абсолютно непостижимые механизмы защиты. Пенициллины, цефалоспорины поражают микробы, нарушая синтез клеточной стенки микроорганизмов. Макролиды, тетрациклины, линкозамиды ингибируют синтез белка в рибосомах микроорганизмов. Хинолоны, фторхинолоны дезорганизуют репликацию ДНК микробной клетки, а нитрофураны - синтез ДНК. Микроорганизмы, защищаясь, способны вырабатывать ферменты, разрушающие антибиотик. Они укрепляют, по сути, «замуровывают» клеточную стенку, и антибиотик не может проникнуть внутрь. Есть микроорганизмы, которые создали нечто подобное насосу и «выкачивают» проникший в них антибиотик. А «полем боя» является человеческий организм, который реагирует и на микроб, и на антибиотик, и на их противостояние[3].
Реакция организма зависит как от его индивидуальных особенностей (иммунитета, способности метаболизировать продукты обмена, устойчивости центральной и вегетативной нервной систем), так и от характеристики микроба, его инвазивности – умения преодолевать защитные барьеры и диссеминироваться в организме, патогенности – способности вызывать болезнь. Таким образом, лечение инфекционного заболевания антибиотиками – сложная задача, и, решая ее, нужно с большой ответственностью подходить к выбору антибактериальных препаратов.
В настоящее время, приступая к созданию антибиотика, ученые ставят перед собой задачу: создать продукт, влияние которого будет распространяться на максимально большой пласт различных патогенов. Однако в почете те антибактериальные средства, которые, действуя на многие патогены, в отношении некоторых из них все же более агрессивны. Например, разработаны препараты, избирательно действующие на резистентные, устойчивые микроорганизмы, но при этом они уничтожают и другие патогены.